Tag Archives: precision bearing

China manufacturer 3200 3201 3202 3203 3204 3205 High Precision Single Row Standards Series Angular Contact Ball Bearing carrier bearing

Product Description

 

Name: 3204 3205 High Precision Single Row Standards Series Angular Contact Ball Bearing     
Type: angular contact ball bearing
Position: low noise machine,automobile,motorcycle,and the general machinery and etc.
Weight: 0.4 KG
Specifications: standard size 
Material: Chrome steel/GCR-15
Technology: Hot forging
CAGE: metal cage
SEAL: rubber or open
Rolling body: Steel ball
Quality: Top grade
Application Industrial pumps
Industrial Gearboxes
Compressors
Trucks,Bus,Trailers
Industrial electric motors&generator
Renewable energy
Quality Control Process  1.Assembly
2.Windage test
3.Cleaning
4.Rotary test
5.Greasing and gland
6.Noise inspection
7.Appearance inspection
8.Rust prevention
9.Product packaging
 

 

Single row angular contact ball bearings can only bear axial load in 1 direction. When bearing pure radial load, this kind of bearing must be installed in pairs because the load action line of rolling element and radial load action line are not in the same radial plane, resulting in internal axial component force.

 

Double row angular contact ball bearings are units with solid inner and outer rings and ball and cage assemblies with polyamide or sheet steel cages. Their construction is similar to a pair of single row angular contact ball bearings in an O arrangement but they are narrower to a certain extent.

Related Catalogues You May Concern

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
72 serie       α=15°(C) α=25°(AC)
7200 10 30 9 6.5 3.8 56000 85000 6.3 3.7 53000 80000
7201 12 32 10 7.2 4.5 53000 80000 6.9 4.3 48000 70000
7202 15 35 11 9.1 5.8 48000 70000 8.8 5.6 43000 63000
7203 17 40 12 11.3 7.4 40000 60000 10.9 7.1 38000 56000
7204 20 47 14 13.1 9.6 34000 50000 12.6 9.2 30000 45000
7205 25 52 15 16.8 13.1 30000 45000 16.1 12.5 26000 40000
7206 30 62 16 23.4 18.8 24000 38000 22.3 18 20000 34000
7207 35 72 17 25.8 22.9 18000 30000 24.5 21.9 17000 28000
7208 40 80 18 34.1 30.9 17000 28000 32.5 29.5 15000 24000
7209 45 85 19 35.5 33.8 16000 26000 33.8 32.3 14000 22000
7210 50 90 20 43.3 40.6 15000 24000 41.3 38.7 14000 22000
7211 55 100 21 53.6 51.1 14000 22000 51.1 48.8 13000 20000
7212 60 110 22 55.8 56.2 12000 19000 53 53.5 11000 18000
7213 65 120 23 67.5 69 11000 18000 64.2 65.8 9500 16000
7214 70 125 24 70.2 74.6 10000 17000 66.6 71.1 9000 15000
7215 75 130 25 72.7 80.2 9500 16000 68.9 76.3 8500 14000
7216 80 140 26 86.5 96.5 9000 15000 82.1 91.9 8000 13000
7217 85 150 28 97.4 107.5 8500 14000 92.5 102.4 7500 12000
7218 90 160 30 121.9 131.3 8000 13000 115.8 124.6 7000 11000
7219 95 170 32 128.9 145.1 7500 12000 122.5 138.3 6700 10000
7220 100 180 34 146.2 165.9 7000 11000 138.9 158.2 6700 10000
7221 105 190 36 164.3 188.2 7000 11000 156.3 179.5 6300 9500
7222 110 200 38 170.4 202.5 6700 10000 161.8 193 6000 9000
7224 120 215 40 175.4 218.4 6000 9000 166.3 207.9 5300 8000
7226 130 230 40 200.4 258.3 5600 8500 190.4 246.2 5000 7500
7228 140 250 42 223.6 306.6 5000 7500 212.3 292.2 4500 6700
7230 150 270 45 240.9 341.5 4500 6700 228.7 325.5 4000 6000
7232 160 290 48 248.6 365.8 4300 6300 236.1 348.6 3800 5600
7234 170 310 52 300.2 459.2 3800 5600 285 437.6 3600 5300
7236 180 320 52 311.2 490.8 3800 5600 295.5 467.7 3400 5000
7238 190 340 55 321.3 524.8 3400 5000 305.1 500.1 3200 4800
7240 200 360 58 330.9 558.6 3200 4800 314.2 532.3 3000 4500

Product Number Bore Dia (d) Outer Dia (D) Width (B) Dynamic Load Rating (Cr) (kN) Static Load Rating (Cor) (kN)
7300 10 mm 35 mm 11 mm 10.1 4.95
7301 12 mm 37 mm 12 mm 11.2 5.25
7302 15 mm 42 mm 13 mm 13.5 7.2
7303 17 mm 47 mm 14 mm 15.9 8.65
7304 20 mm 52 mm 15 mm 18.7 10.6
7305 25 mm 62 mm 17 mm 26.4 15.8
7306 30 mm 72 mm 19 mm 33.5 22.3
7307 35 mm 80 mm 21 mm 40 26.3
7308 40 mm 90 mm 23 mm 49 33
7309 45 mm 100 mm 25 mm 63.5 44
7310 50 mm 110 mm 27 mm 74 52
7311 55 mm 120 mm 29 mm 86 61.5
7312 60 mm 130 mm 31 mm 98 71.5
7313 65 mm 140 mm 33 mm 111 82
7314 70 mm 150 mm 35 mm 125 93.5
7315 75 mm 160 mm 37 mm 136 106
7316 80 mm 170 mm 39 mm 147 119
7317 85 mm 180 mm 41 mm 159 133
7318 90 mm 190 mm 43 mm 171 147
7319 95 mm 200 mm 45 mm 183 162
7320 100 mm 215 mm 47 mm 207 193
7321 105 mm 225 mm 49 mm 220 210
7322 110 mm 240 mm 50 mm 246 246
7324 120 mm 260 mm 55 mm 246 252
7326 130 mm 280 mm 58 mm 273 293
7328 140 mm 300 mm 62 mm 300 335
7330 150 mm 320 mm 65 mm 330 380
7332 160 mm 340 mm 68 mm 345 420
7334 170 mm 360 mm 72 mm 390 485
7336 180 mm 380 mm 75 mm 410 535
7338 190 mm 400 mm 78 mm 430 585
7340 200 mm 420 mm 80 mm 450 605

 

Angular contact ball bearings 706C , B706C series 706C 707C 708C 709C  B706C B707C B708C B709C
724C series 724C 725C 726C 727C 728C 729C
7000C series
7200C series 7248
7303C series 7340
7406 series
71900 series 71900 71901 71902 71903 71904 71905 71906 71907 71908 71909 71910 71911 71912 71913 71914 71915 71916 71917 71918 71919 71920 71922 71924 71926 71928 71930 71932 71934 71936 71938 71940
3200 series
3302 series

ZheJiang Huaxu Bearing Co.,Ltd 
Our factory specialize wheel hub bearing, wheel bearing kit, clutch bearing, taper roller bearing, truck bearing, wheel hub bearing in high quality.
Our bearings have large loading capacity and long lifetime, and widely fit in different vehicles.
wheel bearings and kits to vehicles like LADA, TOYOTA, HONDA, RENAULT, AUDI,Chevrolet, HYUNDAI,FIAT, FORD and so on.
Truck bearings applied to VOLVO,  MAN, BENZ, DAF, SAF and so on.
And we can produce bearings which can meet your multifarious demands.
For example, wheel bearing, taper roller bearing, clutch release bearing, ball bearing, truck bearing ect. 
We can provide brands like TIMKEN, NSK, KOYO, NTN, NACHI, GMB, BW, GM, HYUNDAI ect.

Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.

Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we also customize OEM box and packing as your requirements.

Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.

Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.

Q:Do you offer free samples? 
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users. 

Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you; 
2. Proforma Invoice made and sent to you as the price agreed by both parts; 
3. Deposit Payment after confirming the PI and we arrange production; 
4. Balance paid before shipment or after copy of Bill of Loading.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60 45 25 15
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China manufacturer 3200 3201 3202 3203 3204 3205 High Precision Single Row Standards Series Angular Contact Ball Bearing   carrier bearingChina manufacturer 3200 3201 3202 3203 3204 3205 High Precision Single Row Standards Series Angular Contact Ball Bearing   carrier bearing
editor by CX 2024-05-14

China manufacturer Wj498 CZPT High Precision Blower Bearing Angular Contact Ball Bearing 7011c with Bakelite/Nylon/Brass Cage bearing example

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rolling contact bearing

How do innovations and advancements in rolling contact bearing technology impact their use?

Innovations and advancements in rolling contact bearing technology have a significant impact on their use in various industries. These advancements drive improvements in performance, reliability, efficiency, and versatility of rolling contact bearings. Here’s a detailed explanation of how innovations and advancements in rolling contact bearing technology impact their use:

  • Enhanced Performance:

Innovations in rolling contact bearing technology lead to enhanced performance characteristics. Advancements in bearing design, materials, and manufacturing processes result in bearings with improved load-carrying capacity, higher speed capabilities, and increased resistance to wear and fatigue. These enhancements enable rolling contact bearings to withstand higher loads, operate at higher speeds, and provide superior performance in demanding applications. For industries that rely on bearings to support heavy loads or operate in challenging conditions, these advancements translate into improved equipment performance and reliability.

  • Extended Service Life:

Advancements in rolling contact bearing technology contribute to extended service life. Innovations in bearing materials, surface treatments, and lubrication techniques help reduce friction, wear, and the risk of premature failure. Newer bearing designs and manufacturing processes ensure better distribution of loads and improved stress distribution, resulting in longer bearing life. The ability of rolling contact bearings to operate reliably for extended periods reduces maintenance requirements, downtime, and overall operating costs for industries that heavily rely on bearings.

  • Increased Efficiency:

Advancements in rolling contact bearing technology lead to increased efficiency in various applications. Reduced frictional losses, improved sealing arrangements, and optimized lubrication systems contribute to lower energy consumption and higher overall system efficiency. Bearings with lower friction characteristics result in less power loss, allowing equipment to operate with higher energy efficiency. This is particularly important in industries where energy efficiency is a key consideration, such as automotive, aerospace, and wind energy.

  • Expanded Application Range:

Innovations in rolling contact bearing technology enable their use in a broader range of applications. Advancements in bearing materials, coatings, and sealing arrangements enhance their resistance to extreme temperatures, corrosive environments, or other challenging operating conditions. This expands the application possibilities for rolling contact bearings in industries such as oil and gas, mining, chemical processing, and food and beverage. Additionally, advancements in bearing design allow for more compact and lightweight solutions, opening up opportunities for their use in space-constrained applications.

  • Integration with Digital Technologies:

The integration of rolling contact bearings with digital technologies is another significant impact of advancements in bearing technology. Sensors and monitoring systems can be incorporated into bearings to collect real-time data on operating conditions, such as temperature, vibration, and load. This data can be used for predictive maintenance, condition monitoring, and optimizing equipment performance. The integration of bearings with digital technologies enables industries to implement proactive maintenance strategies, reduce unplanned downtime, and improve overall equipment reliability.

Overall, innovations and advancements in rolling contact bearing technology have a profound impact on their use in various industries. These advancements result in enhanced performance, extended service life, increased efficiency, expanded application range, and integration with digital technologies. As a result, industries can benefit from improved equipment reliability, reduced maintenance costs, increased productivity, and optimized operational performance.

rolling contact bearing

What are the eco-friendly or sustainable aspects of rolling contact bearing materials?

Rolling contact bearing materials can contribute to eco-friendliness and sustainability in several ways. Here’s a detailed explanation of the eco-friendly and sustainable aspects of rolling contact bearing materials:

  • Recyclability:

Many rolling contact bearing materials, such as steel and certain types of alloys, are highly recyclable. At the end of their service life, bearings can be dismantled, and the materials can be recycled or reused. Recycling bearings helps reduce the demand for raw materials, conserves energy, and minimizes waste generation. By promoting a circular economy, the recyclability of bearing materials contributes to resource conservation and waste reduction.

  • Energy Efficiency:

Rolling contact bearings play a crucial role in improving energy efficiency in various applications. By reducing friction and minimizing power losses, bearings help optimize the performance of machinery and equipment. When machines operate more efficiently, they consume less energy, leading to reduced greenhouse gas emissions and lower carbon footprints. The use of high-quality bearing materials, coatings, and lubricants further enhances energy efficiency by minimizing frictional losses.

  • Long Service Life:

Rolling contact bearings are designed to have long service lives under normal operating conditions. Their ability to withstand heavy loads, resist wear, and operate reliably contributes to extended equipment lifetimes. By reducing the frequency of bearing replacements, industries can minimize material consumption, waste generation, and environmental impact associated with manufacturing and disposal processes. The longer service life of rolling contact bearings promotes sustainability by reducing resource consumption and improving equipment lifecycle management.

  • Reduced Maintenance:

The use of high-quality rolling contact bearing materials can contribute to reduced maintenance requirements. Bearings that are resistant to wear, corrosion, and fatigue offer longer maintenance intervals, reducing the need for frequent inspections, replacements, and repairs. This not only saves time and labor but also reduces the consumption of maintenance-related resources such as lubricants and spare parts. The reduced maintenance needs of rolling contact bearings contribute to sustainable operations by optimizing resource utilization and minimizing maintenance-related waste.

  • Environmental Compliance:

Rolling contact bearing materials are subject to various environmental regulations and standards. Manufacturers strive to comply with these regulations by ensuring that their materials are free from hazardous substances or restricted substances. Compliance with regulations such as the Restriction of Hazardous Substances (RoHS) directive helps prevent the use of environmentally harmful materials, reducing the potential environmental impact during the manufacturing, use, and disposal stages of rolling contact bearings.

Overall, rolling contact bearing materials offer several eco-friendly and sustainable aspects, including recyclability, energy efficiency, long service life, reduced maintenance requirements, and compliance with environmental regulations. These aspects contribute to resource conservation, waste reduction, energy savings, and minimized environmental impact throughout the lifecycle of rolling contact bearings.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China manufacturer Wj498 CZPT High Precision Blower Bearing Angular Contact Ball Bearing 7011c with Bakelite/Nylon/Brass Cage   bearing exampleChina manufacturer Wj498 CZPT High Precision Blower Bearing Angular Contact Ball Bearing 7011c with Bakelite/Nylon/Brass Cage   bearing example
editor by CX 2024-05-07

China factory High Precision High Load Zkldf100 Axial Angular Contact Ball Bearing manufacturer

Product Description

ZKLDF100 Axial angular contact ball bearing Introduction:

ZKLDF100 Axial angular contact ball bearing are axial and radial combined cylindrical roller bearings, which is fixed by a bidirectional thrust bearing and a centripetal-guided bearing. They can support radial loads, axial loads from both directions and tilting moments free from clearance. For the convenienience of transportation and fixing,two or 3 symmetrical  screws are fastened to the 2 rings in oder to prevent rollers and rings generating collisions which influence bearing accuracy.
ZKLDF100 Axial angular contact ball bearing Display:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Medium and Large(120-190mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Axial Bearing
Samples:
US$ 180/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

How do rolling contact bearings perform in high-speed or high-load applications?

Rolling contact bearings are designed to perform effectively in high-speed and high-load applications. Their specific design features and characteristics allow them to withstand the demands and challenges associated with these conditions. Here’s a detailed explanation of how rolling contact bearings perform in high-speed or high-load applications:

  • High-Speed Performance:

Rolling contact bearings are well-suited for high-speed applications due to their low friction characteristics. The rolling motion between the rolling elements and the raceways minimizes friction and heat generation, enabling smooth rotation at high speeds. The design of rolling contact bearings, including the selection of suitable materials and precision manufacturing, ensures the balance between load-carrying capacity and reduced friction at high speeds. As a result, these bearings can operate efficiently and reliably in applications such as electric motors, machine tools, turbochargers, and aerospace systems that require rapid and precise rotational motion.

  • High-Load Capacity:

Rolling contact bearings are engineered to handle high loads and distribute them effectively. The rolling elements in the bearings, such as balls or rollers, distribute the applied loads over a larger contact area, reducing stress concentrations and preventing premature failure. The materials used in rolling contact bearings, such as high-grade steels and specialized alloys, provide the necessary strength and durability to withstand heavy loads. Additionally, the design of the bearing, including the number and size of the rolling elements, the geometry of the raceways, and the cage construction, is optimized to maximize load-carrying capacity. This enables rolling contact bearings to perform reliably in high-load applications, including heavy machinery, automotive drivetrains, construction equipment, and industrial processes.

  • Lubrication for High-Speed and High-Load Conditions:

Lubrication is crucial for the performance of rolling contact bearings in high-speed or high-load applications. The lubricant helps reduce friction, dissipate heat, and prevent wear and damage to the bearing surfaces. For high-speed applications, specialized lubricants with low viscosity and high thermal stability are often used to ensure efficient lubrication and prevent excessive heat buildup. In high-load applications, lubrication plays a vital role in load distribution and reducing the risk of premature failure due to excessive stress. Proper lubrication selection and maintenance are essential to ensure optimal performance and longevity of rolling contact bearings under high-speed or high-load conditions.

  • Preload and Stiffness:

In certain high-speed or high-load applications, rolling contact bearings may be preloaded to enhance their stiffness and improve their performance. Preload is a controlled axial force applied to the bearing that eliminates internal clearances and minimizes deflection under load. By applying preload, the rolling contact bearings can maintain their dimensional stability, minimize vibration, and enhance their ability to handle high-speed or high-load conditions. Preload is commonly utilized in precision machine tools, spindle bearings, and other applications where rotational accuracy and rigidity are critical.

In summary, rolling contact bearings perform exceptionally well in high-speed or high-load applications. They are designed to minimize friction, handle heavy loads, and maintain operational integrity under demanding conditions. Through their low friction characteristics, high-load capacity, appropriate lubrication, and potential use of preload, rolling contact bearings ensure reliable and efficient operation in various industries and applications requiring high-speed or high-load capabilities.

rolling contact bearing

Can you provide guidance on the selection and sizing of rolling contact bearings for specific applications?

Yes, I can provide guidance on the selection and sizing of rolling contact bearings for specific applications. Choosing the right rolling contact bearings involves considering various factors such as load requirements, operating conditions, speed, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing rolling contact bearings:

  1. Identify Application Requirements:

Start by identifying the specific requirements of your application. Consider factors such as the type and magnitude of the loads the bearing will be subjected to, the operating speed, and any special environmental conditions like temperature, moisture, or exposure to corrosive substances. Understanding these requirements is crucial as it forms the basis for selecting the appropriate rolling contact bearing.

  1. Analyze Load Conditions:

Next, analyze the load conditions acting on the bearing. Determine if the load is radial, axial, or a combination of both. Consider factors such as the magnitude, direction, and frequency of the load. This analysis helps in determining the appropriate bearing type, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, or tapered roller bearings, that can handle the specific load conditions effectively.

  1. Calculate Equivalent Load:

Calculate the equivalent load acting on the bearing. In cases where the load acting on the bearing is a combination of radial and axial loads, it is necessary to calculate the equivalent load. The equivalent load accounts for the differing effects of radial and axial loads on the bearing and helps in determining the required bearing size and capacity.

  1. Consider Speed and Operating Conditions:

Take into account the speed at which the bearing will operate and the specific operating conditions. Higher speeds may require bearings with special design features or materials to handle the increased centrifugal forces and temperature rise. Consider factors such as lubrication requirements, temperature limits, and any special considerations for factors like shock loads, vibrations, or misalignment. These factors influence the selection of appropriate bearing types and configurations.

  1. Consult Bearing Manufacturer’s Catalogs:

Refer to the catalogs or technical specifications provided by bearing manufacturers. These catalogs contain detailed information about various bearing types, sizes, load ratings, and performance characteristics. Use the information provided to narrow down the options based on your application requirements and load calculations.

  1. Verify Bearing Life:

Check the calculated bearing life to ensure it meets the required operational lifespan of your application. Bearing manufacturers provide life calculation formulas based on industry standards such as ISO or ABMA. These formulas take into account factors like load, speed, and reliability requirements to estimate the expected bearing life. Verify that the selected bearing will provide the desired operational lifespan under the given operating conditions.

  1. Consider Mounting and Dismounting:

Lastly, consider the ease of mounting and dismounting the bearing in your specific application. Evaluate factors such as the bearing’s fit tolerance, the required clearance or preload, and any special mounting or dismounting procedures. Ensure that the selected bearing can be easily installed and maintained in your application.

It is important to note that the selection and sizing of rolling contact bearings can be complex, and it is advisable to seek the assistance of bearing manufacturers, engineers, or experts in the field to ensure the optimal selection for your specific application.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China factory High Precision High Load Zkldf100 Axial Angular Contact Ball Bearing   manufacturerChina factory High Precision High Load Zkldf100 Axial Angular Contact Ball Bearing   manufacturer
editor by CX 2024-04-26

China wholesaler High Precision Ju045xpo Ju055cpo Four Point Angular Contact Ball Bearing Thin-Walled Bearing with Great quality

Product Description

High Precision JU045XPO JU055CPO Angular Contact Ball Bearing Thin-walled Bearing

Bearing Specification :

Model Number JU045XPO
Alternative Number JU055CPO
Part Name Angular Contact Ball 
Brand FSK / KBE / SKB / OEM
Material Gcr15 Chrome Steel
Dimensions(mm)(d*D*b) 114.3*133.35*12.7mm
Weight / Mass ( KG ) 0.61kg
HS Code  8482800000
Original Country Show CHINA

Bearings Detailed Pictures

Other Bearings We Offer:

Deep groove ball bearings Linear ball bearings Pillow block bearings Clutch release bearings
Cylindrical roller bearings Needle roller bearings Thrust ball bearings Thrust roller bearings
Spherical roller bearings Ball joint bearings Conveyor roller bearings Angular contact ball bearings

Our Advantage:

About FSK Factory Condition :

FAQ:
1.How can I get the bearing price?
Mike: You can leave your message on Alibaba, or conact us directly by email, , SkYPE, Viber. Tell us your quantity, usually 2-5 hours you will get the price.
2.How can I buy them?
Mike: You can place order on Alibaba, or pay the payment by Western Union, Paypal, T/T and L/C.
3. How long I can get these bearings?
Mike: for small order, we will delivery the bearings in 1-2 days after recive your payment. usually 3-5 days will arrive in your place by international express, such as DHL, TNT, UPS and so on. For big order, please contact us.
4.How to protect the bearing quality?
Mike: All procudts passed ISO9001:2008 and ISO14000 certificates. we can accept small sample order, you can check the quality.
5. Other service.
Mike: We can offer OEM service according to your demand.
 
FSK Bearing Company Advantages:
(1) We have first-class testing equipment to detect bearing various data parameters and control the quality of the bearing.
Whenever bearings must first detected whether the quality is qualified and the unqualified bearing will be eliminated directly.
So we can get the trust of a large number of customers, and supply them for several years.
(2) We have our own R & D capabilities, to help customers solve the problem of non-standard bearings.
We can also according to customer requirements change their own mark.
(3) Price, our manufacture ensure that our prices across China are quite competitive.
It is better for you to compare prices and quality among suppliers.
But everyone knows you can not buy the highest quality products with the lowest price,
but our product is the best quality if you use equal price.
 
FSK Cooperation Details
Delivery:
For Small weight or ungent ,we send by express UPS,DHL,FEDEX, or EMS,china post with Thracking number
For max production , we will ship by sea/air.
Payment Item:
TT, 30% deposit , 70% before shippment.
L/C At Sight
Paypal Or Western Union In advance
Service:
Trade Assurance
Payment Protection
Timely Delivery Guaranteed
Product Qualtity Protection

 

High Precision JU045XPO JU055CPO Angular Contact Ball Bearing Thin-walled Bearing, Get Cheap Price from China Bearing Factory Now !

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Bearing Number: Ju045xpo Bearing
Service: OEM ODM
Quality: P6 P5
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

China wholesaler High Precision Ju045xpo Ju055cpo Four Point Angular Contact Ball Bearing Thin-Walled Bearing   with Great qualityChina wholesaler High Precision Ju045xpo Ju055cpo Four Point Angular Contact Ball Bearing Thin-Walled Bearing   with Great quality
editor by CX 2024-04-26

China Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c connecting rod bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

How do innovations and advancements in rolling contact bearing technology impact their use?

Innovations and advancements in rolling contact bearing technology have a significant impact on their use in various industries. These advancements drive improvements in performance, reliability, efficiency, and versatility of rolling contact bearings. Here’s a detailed explanation of how innovations and advancements in rolling contact bearing technology impact their use:

  • Enhanced Performance:

Innovations in rolling contact bearing technology lead to enhanced performance characteristics. Advancements in bearing design, materials, and manufacturing processes result in bearings with improved load-carrying capacity, higher speed capabilities, and increased resistance to wear and fatigue. These enhancements enable rolling contact bearings to withstand higher loads, operate at higher speeds, and provide superior performance in demanding applications. For industries that rely on bearings to support heavy loads or operate in challenging conditions, these advancements translate into improved equipment performance and reliability.

  • Extended Service Life:

Advancements in rolling contact bearing technology contribute to extended service life. Innovations in bearing materials, surface treatments, and lubrication techniques help reduce friction, wear, and the risk of premature failure. Newer bearing designs and manufacturing processes ensure better distribution of loads and improved stress distribution, resulting in longer bearing life. The ability of rolling contact bearings to operate reliably for extended periods reduces maintenance requirements, downtime, and overall operating costs for industries that heavily rely on bearings.

  • Increased Efficiency:

Advancements in rolling contact bearing technology lead to increased efficiency in various applications. Reduced frictional losses, improved sealing arrangements, and optimized lubrication systems contribute to lower energy consumption and higher overall system efficiency. Bearings with lower friction characteristics result in less power loss, allowing equipment to operate with higher energy efficiency. This is particularly important in industries where energy efficiency is a key consideration, such as automotive, aerospace, and wind energy.

  • Expanded Application Range:

Innovations in rolling contact bearing technology enable their use in a broader range of applications. Advancements in bearing materials, coatings, and sealing arrangements enhance their resistance to extreme temperatures, corrosive environments, or other challenging operating conditions. This expands the application possibilities for rolling contact bearings in industries such as oil and gas, mining, chemical processing, and food and beverage. Additionally, advancements in bearing design allow for more compact and lightweight solutions, opening up opportunities for their use in space-constrained applications.

  • Integration with Digital Technologies:

The integration of rolling contact bearings with digital technologies is another significant impact of advancements in bearing technology. Sensors and monitoring systems can be incorporated into bearings to collect real-time data on operating conditions, such as temperature, vibration, and load. This data can be used for predictive maintenance, condition monitoring, and optimizing equipment performance. The integration of bearings with digital technologies enables industries to implement proactive maintenance strategies, reduce unplanned downtime, and improve overall equipment reliability.

Overall, innovations and advancements in rolling contact bearing technology have a profound impact on their use in various industries. These advancements result in enhanced performance, extended service life, increased efficiency, expanded application range, and integration with digital technologies. As a result, industries can benefit from improved equipment reliability, reduced maintenance costs, increased productivity, and optimized operational performance.

rolling contact bearing

How do rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment?

Rolling contact bearings play a crucial role in enhancing the overall efficiency and functionality of machinery and equipment. Here’s a detailed explanation of how rolling contact bearings contribute to improved efficiency and functionality:

  • Reduced Friction:

Rolling contact bearings are designed to minimize friction between moving parts. They consist of rolling elements, such as balls or rollers, that reduce the contact surface area and enable rolling motion. This rolling action results in lower friction compared to sliding contact, allowing machinery to operate with reduced energy consumption. By reducing frictional losses, rolling contact bearings help optimize the efficiency of machinery and equipment.

  • Load Distribution:

Rolling contact bearings distribute loads evenly across their rolling elements. This load distribution capability ensures that the forces acting on the machinery are spread out and shared by multiple bearing points. By distributing the load, rolling contact bearings help prevent excessive stress on individual components and minimize the risk of premature failure. This improves the overall functionality and reliability of machinery, allowing it to operate under heavy loads without compromising performance.

  • High-Speed Capability:

Rolling contact bearings are designed to operate at high speeds. The rolling elements and raceways are precisely engineered to minimize the centrifugal forces and minimize frictional heat generation. This allows machinery and equipment to achieve higher rotational speeds without compromising performance or reliability. The high-speed capability of rolling contact bearings is particularly advantageous in applications such as automotive engines, turbines, machine tools, and high-speed manufacturing processes.

  • Reduced Vibration and Noise:

Rolling contact bearings help reduce vibration and noise in machinery and equipment. The rolling action of the bearing elements minimizes friction-induced vibrations, resulting in smoother operation. Additionally, well-designed and properly lubricated rolling contact bearings dampen vibrations caused by external forces or imbalances in rotating parts. By reducing vibration and noise levels, rolling contact bearings contribute to a quieter and more comfortable working environment, as well as improved accuracy and precision in equipment that requires high levels of stability.

  • Versatility and Flexibility:

Rolling contact bearings offer versatility and flexibility in machinery design. They come in various types and configurations, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, and tapered roller bearings, each suited for specific applications and load conditions. The availability of different bearing sizes and designs allows engineers and designers to select the most appropriate bearing for their specific machinery requirements. This versatility and flexibility enable the optimization of machinery performance and functionality.

  • Compact Design:

Rolling contact bearings enable compact and space-saving machinery designs. Their ability to handle high loads while occupying minimal space allows for the creation of more compact equipment. This is particularly beneficial in applications where space is limited, such as automotive, aerospace, and portable devices. The compact design made possible by rolling contact bearings enhances the overall functionality and efficiency of machinery by maximizing the use of available space.

In summary, rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment through reduced friction, load distribution, high-speed capability, vibration and noise reduction, versatility and flexibility in design, and compactness. By optimizing the performance of rotating components, rolling contact bearings contribute to improved energy efficiency, reliability, precision, and longevity of machinery and equipment in various industries.

rolling contact bearing

How do rolling contact bearings contribute to reduced friction and improved efficiency in machinery?

Rolling contact bearings play a crucial role in reducing friction and improving the efficiency of machinery. They achieve this through several design features and operating characteristics. Here’s a detailed explanation of how rolling contact bearings contribute to reduced friction and improved efficiency:

  • Rolling Motion:

Unlike sliding contact bearings, which rely on sliding friction between surfaces, rolling contact bearings utilize rolling motion between the rolling elements (balls or rollers) and the raceways. This rolling motion significantly reduces friction compared to sliding friction, resulting in lower energy losses and improved efficiency. The rolling contact between the elements and the raceways minimizes surface contact and allows smooth rotation with reduced frictional resistance.

  • Lubrication:

Rolling contact bearings are typically lubricated with oils or greases to further reduce friction and wear. Lubricants form a thin film between the rolling elements and the raceways, providing a protective layer that separates the surfaces and minimizes direct metal-to-metal contact. This lubricating film reduces friction and dissipates heat generated during operation, contributing to smoother rotation and improved efficiency.

  • Reduced Sliding Friction:

As mentioned earlier, rolling contact bearings rely on rolling motion rather than sliding friction. This design characteristic reduces the occurrence of sliding friction between the bearing components, resulting in lower frictional forces and decreased energy losses. The reduced sliding friction contributes to improved efficiency and can translate into energy savings in various machinery applications.

  • Load Distribution:

Rolling contact bearings distribute loads more evenly compared to sliding contact bearings. The rolling elements in a bearing share the load and distribute it over a larger contact area, reducing localized stress and minimizing friction. This load distribution characteristic helps prevent excessive wear and prolongs the service life of the bearing. By maintaining efficient load distribution, rolling contact bearings contribute to improved efficiency and reliability in machinery.

  • High-Speed Capability:

Rolling contact bearings are well-suited for high-speed applications due to their low friction characteristics. The rolling motion and reduced sliding friction allow these bearings to rotate at higher speeds with minimal heat generation. This high-speed capability is essential for various machinery, such as electric motors, machine tools, and automotive components, where efficient power transmission and rotational precision are critical for optimal performance and efficiency.

In summary, rolling contact bearings contribute to reduced friction and improved efficiency in machinery through their rolling motion, effective lubrication, reduced sliding friction, even load distribution, and high-speed capability. These design features and operating characteristics minimize energy losses, reduce wear, and enhance the overall performance and reliability of machinery in a wide range of industries.

China Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c   connecting rod bearingChina Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c   connecting rod bearing
editor by CX 2024-04-23

China best CZPT Brand with High Precision 7008 Tdu Ep7 Single Row Angular Contact Ball Bearing wheel bearing

Product Description

Company Profile

Our company was established in the year of 1998, located in the northwest of Guanxian County, where is the largest bearing manufacturing center of China.
We specialize in manufacturing double-row spherical roller bearing, cylindrical roller bearing, deep groove ball bearing, tapered roller bearing, inch tapered roller bearing, self-aligning ball bearing, pillow block bearing, thrust bearing, and so on .There are 8 series of bearing(production range), more than 500 types of bearings, which are used in many fields, for its high grade.
Since the set up of company, we stick to the principle of “Super Quality, Sincere to Customer”, and has grown up into a large size private company among the hard competition market for our super quality, competitive price, and first grade service level. Up to now, we have installed our company with the top advanced test and check facilities, and advanced auto production equipment. Meanwhile, we could manufacture non-standard bearings as per customer’s demand and sample.
Thanks to the strict management system, advanced technology, excellent facilities and accurate testing method, all products are manufactured according to the demand of ISO 9001:2000 ,and the quality of our products has all met or exceeded China National Standard. They are not only sold well all over the country, but also exported to Thailand, Vietnam, Malaysia, India, Pakistan, Turkey, Russia, Mexico, Iran, Iraq, Nigeria, and Bangladesh.
On the basis of equal and mutual benefit, super quality and sincere service, we sincerely invite you to our company. Let’s share our good-fellowship and create a prosperous future together!

Product Description

production name 71952 C Angular contact ball bearing Single row ground
brand AUTO/OEM/SEMRI
Model Number 71952 C
Dimension 12*32*10mm
Basic dynamic load rating 284.6kn
Basic static load rating 528.8kn
Attainable speed for grease lubrication 3800r/Min
Attainable speed for oil-air lubrication 4500r/min
Ring Material Gcr15/ Carbon Steel/ Stainless Steel/ Si3N4/ ZrO2
Cage Material  Steel/ Brass/ Nylon/ Custom
Precision P0, P6, P5, or as requested
Vibration ZV1, ZV2, ZV3, or as requested
Clearance  C0,C2,C3, or as requested 
Quality standard ISO9001:2000/ SGS
Quality Control Process  1.Assembly
2.Windage test2.Windage test
3.Cleaning
4.Rotary test
5.Greasing and gland
6.Noise inspection
7.Appearance inspection
8.Rust prevention
9.Product packaging
Application  low noise machine,automobile,motorcycle,and the general machinery and etc. 

718 Series Angular Contact Bearings
719 Series Angular Contact Bearings
H719 Series Angular Contact Bearings
70 Series Angular Contact Bearings
H70 Series Angular Contact Bearings
B70 Series Angular Contact Bearings
72 Series Angular Contact Bearings

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
718 serie       α=15°(C) α=25°(AC)
71800 10 19 5 1.8 1.1 75000 120000 1.7 1.1 70000 110000
71801 12 21 5 2 1.4 70000 110000 1.9 1.3 63000 95000
71802 15 24 5 2.2 1.8 60000 90000 2.1 1.7 53000 80000
71803 17 26 5 2.3 1.9 53000 80000 2.1 1.8 50000 75000
71804 20 32 7 3.9 3.4 45000 67000 3.7 3.2 40000 60000
71805 25 37 7 4.2 4.1 38000 56000 3.9 3.9 34000 50000
71806 30 42 7 4.4 4.8 32000 48000 4.1 4.5 28000 43000
71807 35 47 7 4.6 5.5 26000 40000 4.3 5.2 24000 38000
71815 75 95 10 14.2 21.7 12000 19000 13.3 20.5 11000 18000
71816 80 100 10 14.5 23.1 11000 18000 13.6 21.8 9500 16000
71817 85 110 13 21.5 32.2 10000 17000 20.2 30.5 9000 15000
71818 90 115 13 21.7 33.5 9500 16000 20.4 31.6 8500 14000
71819 95 120 13 21.9 34.7 9000 15000 20.6 32.8 8500 14000
71820 100 125 13 22.5 37 8500 14000 21.2 34.9 8000 13000
71821 105 130 13 22.7 38.3 8500 14000 21.3 36.1 8000 13000
71822 110 140 16 31.8 51.6 8000 13000 29.9 48.7 7500 12000
71824 120 150 16 33.1 56.9 7000 11000 31.1 53.7 6700 10000
71826 130 165 18 38.7 67.6 6700 10000 36.3 63.8 6000 9000
71828 140 175 18 44.8 79.2 6000 9000 42 74.7 5600 8500
71830 150 190 20 51.2 92 5600 8500 48 86.8 5000 7500
71832 160 200 20 52.4 97.7 5000 7500 49.2 92.2 4800 7000
71834 170 215 22 66.5 123.4 4800 7000 62.4 116.5 4300 6300
71836 180 225 22 83.8 151.6 4800 7000 78.6 143 4300 6300
71838 190 240 24 100 179 4500 6700 94.4 169.2 4000 6000
71840 200 250 24 102.5 189.3 4300 6300 96.2 178.6 3800 5600
71844 220 270 24 106.4 209.3 3800 5600 99.8 197.4 3400 5000
71848 240 300 28 145 277 3400 5000 136 261 3000 4500
71852 260 320 28 148.8 299.3 3100 4600 139.6 282.3 2700 4100
71856 280 350 33 182 363.8 2800 4100 170.8 343.3 2400 3700

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
719 serie       α=15°(C) α=25°(AC)
71907 35 55 10 11 10.9 26000 40000 10.4 10.3 20000 34000
H71907 35 55 10 7.7 5.4 36000 53000 7.4 5.1 30000 45000
H71907/HQ1 35 55 10 7.7 5.4 40000 60000 7.4 5.1 34000 50000
71908 40 62 12 14 14.2 20000 34000 13.3 13.5 18000 30000
H71908 40 62 12 9.8 7 30000 45000 9.3 6.6 26000 40000
H71908/HQ1 40 62 12 9.8 7 34000 50000 9.3 6.6 28000 43000
71909 45 68 12 14.7 16.1 18000 30000 13.9 15.2 17000 28000
H71909 45 68 12 10.3 7.7 26000 40000 9.7 7.3 22000 36000
H71909/HQ1 45 68 12 10.3 7.7 28000 43000 9.7 7.3 26000 40000
71910 50 72 12 19 21.2 17000 28000 17.9 20.1 15000 24000
H71910   72 12 13.2 10.2 22000 36000 12.5 9.5 19000 32000
H71910/HQ1 50 72 12 13.2 10.2 26000 40000 12.5 9.5 22000 36000
71911 55 80 13 23.7 27.4 15000 24000 22.4 26 14000 22000
H71911 55 80 13 16.2 12.5 19000 32000 15.2 11.8 16000 26000
H71911/HQ1 55 80 13 16.2 12.5 22000 36000 15.2 11.8 22000 36000
71912 60 85 13 24.8 30.3 14000 22000 23.3 28.7 13000 20000
H71912 60 85 13 16.5 13.8 18000 30000 15.8 13.2 15000 24000
H71912/HQ1 60 85 13 16.5 13.8 19000 32000 15.8 13.2 20000 34000
71913 65 90 13 25.1 31.9 13000 20000 23.6 30.2 12000 19000
H71913 65 90 13 16.8 14.5 17000 28000 16.2 13.8 15000 24000
H71913/HQ1 65 90 13 16.8 14.5 19000 32000 16.2 13.8 17000 28000
71914 70 100 16 34.5 43.4 12000 19000 32.6 41.2 11000 18000
H71914 70 100 16 20.8 17.8 16000 26000 19.8 16.8 13000 20000
H71914/HQ1 70 100 16 20.8 17.8 19000 32000 19.8 16.8 17000 28000
71915 75 105 16 25 45.6 11000 18000 33 43.2 95000 16000
H71915 75 105 16 21.8 19.2 15000 24000 20.5 18.2 13000 20000
H71915/HQ1 75 105 16 21.8 19.2 17000 28000 20.5 18.2 15000 24000
71916 80 110 16 35.5 47.8 10000 17000 33.5 45.3 9000 15000
H71916 80 110 16 22.5 20.8 14000 22000 21.2 19.5 12000 19000
H71916/HQ1 80 110 16 22.5 20.8 16000 26000 21.2 19.5 14000 24000
71917   120 18 46.5 61.9 9500 16000 43.8 58.6 8500 14000
H71917 85 120 18 26.2 24.2 13000 20000 24.8 22.8 11000 18000
H71917/HQ1 85 120 18 26.2 24.2 15000 24000 24.8 22.8 13000 20000
71918 90 125 18 47.2 64.8 9000 15000 44.5 61.4 8000 13000
H71918 90 125 18 27.2 26.2 13000 20000 25.5 24.5 11000 18000
H71918/HQ1 90 125 18 27.2 26.2 15000 24000 25.5 24.5 13000 20000
71919 95 130 18 47.9 67.8 9000 15000 45.2 64.1 8000 13000
H71919 95 130 18 27.2 26.8 12000 19000 25.8 25.5 11000 18000
H71919/HQ1 95 130 18 27.2 26.8 14000 22000 25.8 25.5 13000 20000
71920 100 140 20 60.4 84.4 8500 14000 56.9 79.9 8000 13000
H71920 100 140 20 40.2 37.5 11000 18000 37.8 35.5 9000 15000
H71920/HQ1 100 140 20 40.2 37.5 13000 20000 37.8 35.5 11000 18000
71921 105 145 20 61.4 88.2 8000 13000 57.8 83.5 7500 12000
H71921 105 145 20 40.8 39.2 10000 17000 38.5 36.8 8500 14000
H71921/HQ1 105 145 20 40.8 39.2 12000 19000 38.5 36.8 10000 17000
71922 110 150 20 62.3 91.9 7500 12000 58.7 87 7000 11000
H71922 110 150 20 41.2 40.5 9000 15000 39.2 38.2 7500 12000
H71922/HQ1 110 150 20 41.2 40.5 11000 18000 39.2 38.2 9500 16000
71924 120 165 22 73.7 107.6 7000 11000 69.5 101.9 6700 10000
H71924 120 165 22 43.2 44.8 8500 14000 40.5 42.5 7500 12000
H71924/HQ1 120 165 22 43.2 44.8 10000 17000 40.8 42.5 9000 15000
71926 130 180 24 76.3 117.1 6700 10000 71.9 110.9 6000 9000
H71926 130 180 24 53.2 56.5 8000 13000 50.2 53.5 7500 12000
H71926/HQ1 130 180 24 53.2 56.5 9000 15000 50.2 53.5 8000 14000
71928 140 190 24 78.9 126.4 6000 9000 74.4 119.7 5600 8500
H71928 140 190 24 53.8 59.2 7000 11000 50.8 55.8 6700 10000
H71928/HQ1 140 190 24 53.8 59.2 8000 13000 50.8 55.8 7500 12000
71930 150 210 28 118.2 175.1 5600 8500 111.4 165.8 5000 7500
H71930 150 210 28 65.2 72.8 6700 10000 61.5 68.8 6000 9000
H71930/HQ1 150 210 28 65.2 72.8 7500 12000 61.5 68.8 7000 11000
71932 160 220 28 123.6 191.2 5000 7500 116.5 181.1 4800 7000
H71932 160 220 28 66.2 75.8 6000 9000 62.5 71.5 5600 8500
H71932/HQ1   220 28 66.2 75.8 7000 11000 62.5 71.5 6700 10000
71934 170 230 28 125.7 200 4800 7000 118.5 189.4 4300 6300
H71934 170 230 28 66.8 78.8 5600 8500 63.2 74.5 5000 7500
H71934/HQ1 170 230 28 66.8 78.8 6700 10000 63.2 74.2 6000 9000
71936 180 250 33 159.7 249.1 4500 6700 150.6 235.9 4000 6000
H71936 180 250 33 79.5 95.2 5000 7500 75.2 89.8 4800 7000
H71936/HQ1 180 250 33 79.5 95.2 6000 9000 75.2 89.8 5600 8500
71938 190 260 33 162.8 260.8 4300 6300 153.5 247 3800 5600
H71938 190 260 33 80.5 98.5 4800 7000 76.2 93.2 4300 6300
H71938/HQ1 190 260 33 80.5 98.5 5600 8500 76.2 93.2 5000 7500
71940 200 280 38 198.4 311.4 3800 5600 187.1 294.9 3600 5300
H71940 200 280 38 82.8 105.5 4500 6700 78.2 99.5 4000 6000
H71940/HQ1 200 280 38 82.8 105.5 5000 7500 78.2 99.5 4500 6700
71944 220 300 38 206.6 341.1 3600 5300 194.8 323 3200 4800
H71944 220 300 38 96.9 125.4 4300 6300 91.5 118.4 3800 5600
H71944/HQ1 220 300 38 96.9 125.4 5000 7500 91.5 118.4 4300 6300
71948 240 320 38 219.2 384.2 3200 4800 206.7 363.8 3000 4500
H71948 240 320 38 153 216 3900 5800 146 200 3500 5200
H71948/HQ1 240 320 38 153 216 4500 6500 146 200 4000 5800
71952 260 360 46 284.6 528.8 3000 4500 268.3 500.8 2600 4000
71956 280 380 46 288.7 554.6 2600 4000 272.2 525.5 2200 3600

Package

Certificate

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Material: Bearing Steel
ISO: 9001
Transport Package: Standard Export Package
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China best CZPT Brand with High Precision 7008 Tdu Ep7 Single Row Angular Contact Ball Bearing   wheel bearingChina best CZPT Brand with High Precision 7008 Tdu Ep7 Single Row Angular Contact Ball Bearing   wheel bearing
editor by CX 2024-04-19

China Best Sales High Speed Precision Deep Groove Ball Bearing, Angular Contact Ball Bearing, Thrust Ball Bearing, Insert Ball Bearing for Sale with high quality

Product Description

Product Description

Detailed Photos

Product Parameters

 

Certifications

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Advantage: Large Bearing Capacity
Transport Package: Single Box, Plastic Barrel, Carton, Tray
Specification: Thrust Bearing
Trademark: Huazhong
Origin: China
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

China Best Sales High Speed Precision Deep Groove Ball Bearing, Angular Contact Ball Bearing, Thrust Ball Bearing, Insert Ball Bearing for Sale   with high qualityChina Best Sales High Speed Precision Deep Groove Ball Bearing, Angular Contact Ball Bearing, Thrust Ball Bearing, Insert Ball Bearing for Sale   with high quality
editor by CX 2024-04-17

China Custom Super Precision Chrome Steel High Temperature Resistance CZPT Brand Qj334n2ma Four Point Ball Bearing for Motors bearing and race

Product Description

Super Precision Chrome Steel High Temperature Resistance CZPT Brand Qj334n2ma Four Point Ball Bearing for Motors                 
 

Four Point Contact Ball Bearing 
     
Four point contact ball bearings are radial single row angular contact ball bearings with raceways that are designed to support axial loads in both directions. For a given axial load, a limited radial load can also be supported (Load ratio). The bearings are separable, i.e. the outer ring with ball and cage assembly can be mounted separately from the 2 inner ring halves.

Features and Benefits

 -Accommodates axial loads in both directions
 -Less axial space
 These bearings take up considerably less axial space than double row bearings.
 -High load carrying capacity
 A large number of balls are incorporated, giving the bearing its high load carrying capacity.
 -Separable design
 The split inner ring leads to easier mounting and dismounting of the bearing. 
 -Improved oil flow
Limited inner ring deformation when subjected to high clamping forces

Applications

Angular contact bearings are commonly used in gearboxes, pumps, electric motors, and clutches and other high-speed applications. Bearings having larger contact angles can support larger axial loads, and the contact angle does not usually exceed about 40 degrees.
 

Product Name Four Point Contact Ball Bearing QJ334N2MA 
Brand Name KHRD
Seals Type OPEN/2Z/2RS/Z/RS
Material Chrome Steel ,Stainless steel,Ceramic,Nylon
Clearance C0,C2,C3,C4,C5
Precision Grade P0,P6,P5,P4,P2(ABEC1, ABEC3, ABEC5, ABEC7, ABEC9)
Greese SRL ,PS2, Alvania R12 ,etc
Number of Row Single Row/Double Row
Certifications ISO 9001
Package Box,Carton,Wooden Box,Plastic Tube or Per buyers requirement
MOQ 1PCS
Serice  OEM
Sample Available
Payment Term  TT or PayPal
Port HangZhou/HangZhou/ZheJiang

Q: Are you a trading company or a manufacturer ?
A: We are a manufacturer more than 16 years with professional skill.

Q:Do you provide samples ? Are they free or extra ?
A:Yes, we could offer the sample, while could you pay for the freight?

Q:What kind of freight will you use?
A:Shipment, FedEx, TNT, DHL, UPS and EMS etc.

Q:Could you make bearings with our OEM logo,color and packing?
A: Of course. Please inform us your brand logo,color and packing.

Q: How long is your delivery time?
A: Generally it will be 3-7 days if the goods are in stock; while it will be 15-30 days if the goods are not in stock, which is according to your quantity.

Q: Will you check these products before shipment?
A: Yes, products will be strictly inspected by our own professional QC Process System before shipment.

Q: What’s the Payment Terms ?
A: Usually we accept T/T ,western union ,and order online.

If you want to know more details, please contact us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Aligning Bearing
Separated: Unseparated
Samples:
US$ 0.5/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rolling contact bearing

Can you explain the installation and alignment considerations for rolling contact bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of rolling contact bearings. Incorrect installation or misalignment can lead to premature wear, increased friction, reduced load-carrying capacity, and potential bearing failure. Here’s a detailed explanation of the installation and alignment considerations for rolling contact bearings:

  • Clean and Proper Workspace:

Before installing rolling contact bearings, it is essential to ensure a clean and suitable workspace. The work area should be free from dirt, dust, debris, and contaminants that could enter the bearing during installation. Contamination can cause damage to the bearing surfaces and compromise its performance. Additionally, the workspace should have appropriate tools and equipment to facilitate the installation process, including bearing pullers, mounting tools, and measurement instruments.

  • Handling and Storage:

Rolling contact bearings should be handled with care to prevent damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from moisture, dust, and extreme temperatures. During handling, it is important to avoid dropping or impacting the bearings, as this can cause surface damage or internal defects. Proper handling and storage practices help maintain the integrity of the bearings and ensure their performance during installation.

  • Shaft and Housing Preparation:

Prior to installing the rolling contact bearings, the shaft and housing surfaces must be prepared appropriately. The shaft and housing should be clean, free from burrs, and have the correct dimensions and tolerances specified by the bearing manufacturer. Any roughness or irregularities on the shaft or housing can affect the fit and alignment of the bearing, leading to performance issues. It may be necessary to use appropriate tools, such as emery cloth or a deburring tool, to smooth the surfaces and ensure proper fitment.

  • Bearing Mounting:

When mounting rolling contact bearings, it is essential to follow the manufacturer’s recommended procedures and guidelines. This includes using the appropriate mounting tools and techniques to apply the necessary axial or radial force evenly during installation. Overloading or uneven force application can lead to bearing damage or misalignment. Proper mounting techniques may involve using a press, heat, or specialized mounting tools to ensure the bearing is seated securely and accurately on the shaft or in the housing.

  • Alignment:

Accurate alignment of rolling contact bearings is critical for their optimal performance. Misalignment can cause increased friction, premature wear, and reduced load-carrying capacity. It is important to align the bearing with respect to the shaft and housing to ensure proper concentricity and parallelism. Alignment methods may include visual alignment, feeler gauges, dial indicators, laser alignment systems, or other precision alignment tools. The specific alignment requirements may vary depending on the bearing type, application, and manufacturer recommendations.

  • Lubrication:

Proper lubrication is essential during the installation of rolling contact bearings. The bearing manufacturer’s recommendations should be followed regarding the type, quantity, and method of lubrication. Lubrication helps reduce friction, dissipate heat, and protect against wear and corrosion. It is important to ensure that the bearing is adequately lubricated during installation to facilitate smooth operation and prevent damage.

  • Verification and Testing:

After installation, it is recommended to verify the proper fitment, alignment, and operation of the rolling contact bearings. This may involve checking the axial and radial clearances, measuring runout, and performing functional tests to ensure smooth rotation and proper load distribution. Verification and testing help confirm the successful installation and identify any potential issues that may require adjustment or corrective action.

In summary, proper installation and alignment considerations are essential for the optimal performance and longevity of rolling contact bearings. Following recommended procedures, handling the bearings carefully, preparing the shaft and housing surfaces, ensuring accurate alignment, and providing appropriate lubrication contribute to the successful installation and reliable operation of rolling contact bearings in various applications.

rolling contact bearing

How do rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment?

Rolling contact bearings play a crucial role in enhancing the overall efficiency and functionality of machinery and equipment. Here’s a detailed explanation of how rolling contact bearings contribute to improved efficiency and functionality:

  • Reduced Friction:

Rolling contact bearings are designed to minimize friction between moving parts. They consist of rolling elements, such as balls or rollers, that reduce the contact surface area and enable rolling motion. This rolling action results in lower friction compared to sliding contact, allowing machinery to operate with reduced energy consumption. By reducing frictional losses, rolling contact bearings help optimize the efficiency of machinery and equipment.

  • Load Distribution:

Rolling contact bearings distribute loads evenly across their rolling elements. This load distribution capability ensures that the forces acting on the machinery are spread out and shared by multiple bearing points. By distributing the load, rolling contact bearings help prevent excessive stress on individual components and minimize the risk of premature failure. This improves the overall functionality and reliability of machinery, allowing it to operate under heavy loads without compromising performance.

  • High-Speed Capability:

Rolling contact bearings are designed to operate at high speeds. The rolling elements and raceways are precisely engineered to minimize the centrifugal forces and minimize frictional heat generation. This allows machinery and equipment to achieve higher rotational speeds without compromising performance or reliability. The high-speed capability of rolling contact bearings is particularly advantageous in applications such as automotive engines, turbines, machine tools, and high-speed manufacturing processes.

  • Reduced Vibration and Noise:

Rolling contact bearings help reduce vibration and noise in machinery and equipment. The rolling action of the bearing elements minimizes friction-induced vibrations, resulting in smoother operation. Additionally, well-designed and properly lubricated rolling contact bearings dampen vibrations caused by external forces or imbalances in rotating parts. By reducing vibration and noise levels, rolling contact bearings contribute to a quieter and more comfortable working environment, as well as improved accuracy and precision in equipment that requires high levels of stability.

  • Versatility and Flexibility:

Rolling contact bearings offer versatility and flexibility in machinery design. They come in various types and configurations, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, and tapered roller bearings, each suited for specific applications and load conditions. The availability of different bearing sizes and designs allows engineers and designers to select the most appropriate bearing for their specific machinery requirements. This versatility and flexibility enable the optimization of machinery performance and functionality.

  • Compact Design:

Rolling contact bearings enable compact and space-saving machinery designs. Their ability to handle high loads while occupying minimal space allows for the creation of more compact equipment. This is particularly beneficial in applications where space is limited, such as automotive, aerospace, and portable devices. The compact design made possible by rolling contact bearings enhances the overall functionality and efficiency of machinery by maximizing the use of available space.

In summary, rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment through reduced friction, load distribution, high-speed capability, vibration and noise reduction, versatility and flexibility in design, and compactness. By optimizing the performance of rotating components, rolling contact bearings contribute to improved energy efficiency, reliability, precision, and longevity of machinery and equipment in various industries.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China Custom Super Precision Chrome Steel High Temperature Resistance CZPT Brand Qj334n2ma Four Point Ball Bearing for Motors   bearing and raceChina Custom Super Precision Chrome Steel High Temperature Resistance CZPT Brand Qj334n2ma Four Point Ball Bearing for Motors   bearing and race
editor by CX 2024-04-16

China OEM Single Row Precision High-Speed Angular Contact Ball Bearings ball bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China OEM Single Row Precision High-Speed Angular Contact Ball Bearings   ball bearingChina OEM Single Row Precision High-Speed Angular Contact Ball Bearings   ball bearing
editor by CX 2024-04-12

China Standard High Precision Angular Contact Ball Bearings 7310 for Angular Contact Ball Bearing bearing air

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can you explain the installation and alignment considerations for rolling contact bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of rolling contact bearings. Incorrect installation or misalignment can lead to premature wear, increased friction, reduced load-carrying capacity, and potential bearing failure. Here’s a detailed explanation of the installation and alignment considerations for rolling contact bearings:

  • Clean and Proper Workspace:

Before installing rolling contact bearings, it is essential to ensure a clean and suitable workspace. The work area should be free from dirt, dust, debris, and contaminants that could enter the bearing during installation. Contamination can cause damage to the bearing surfaces and compromise its performance. Additionally, the workspace should have appropriate tools and equipment to facilitate the installation process, including bearing pullers, mounting tools, and measurement instruments.

  • Handling and Storage:

Rolling contact bearings should be handled with care to prevent damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from moisture, dust, and extreme temperatures. During handling, it is important to avoid dropping or impacting the bearings, as this can cause surface damage or internal defects. Proper handling and storage practices help maintain the integrity of the bearings and ensure their performance during installation.

  • Shaft and Housing Preparation:

Prior to installing the rolling contact bearings, the shaft and housing surfaces must be prepared appropriately. The shaft and housing should be clean, free from burrs, and have the correct dimensions and tolerances specified by the bearing manufacturer. Any roughness or irregularities on the shaft or housing can affect the fit and alignment of the bearing, leading to performance issues. It may be necessary to use appropriate tools, such as emery cloth or a deburring tool, to smooth the surfaces and ensure proper fitment.

  • Bearing Mounting:

When mounting rolling contact bearings, it is essential to follow the manufacturer’s recommended procedures and guidelines. This includes using the appropriate mounting tools and techniques to apply the necessary axial or radial force evenly during installation. Overloading or uneven force application can lead to bearing damage or misalignment. Proper mounting techniques may involve using a press, heat, or specialized mounting tools to ensure the bearing is seated securely and accurately on the shaft or in the housing.

  • Alignment:

Accurate alignment of rolling contact bearings is critical for their optimal performance. Misalignment can cause increased friction, premature wear, and reduced load-carrying capacity. It is important to align the bearing with respect to the shaft and housing to ensure proper concentricity and parallelism. Alignment methods may include visual alignment, feeler gauges, dial indicators, laser alignment systems, or other precision alignment tools. The specific alignment requirements may vary depending on the bearing type, application, and manufacturer recommendations.

  • Lubrication:

Proper lubrication is essential during the installation of rolling contact bearings. The bearing manufacturer’s recommendations should be followed regarding the type, quantity, and method of lubrication. Lubrication helps reduce friction, dissipate heat, and protect against wear and corrosion. It is important to ensure that the bearing is adequately lubricated during installation to facilitate smooth operation and prevent damage.

  • Verification and Testing:

After installation, it is recommended to verify the proper fitment, alignment, and operation of the rolling contact bearings. This may involve checking the axial and radial clearances, measuring runout, and performing functional tests to ensure smooth rotation and proper load distribution. Verification and testing help confirm the successful installation and identify any potential issues that may require adjustment or corrective action.

In summary, proper installation and alignment considerations are essential for the optimal performance and longevity of rolling contact bearings. Following recommended procedures, handling the bearings carefully, preparing the shaft and housing surfaces, ensuring accurate alignment, and providing appropriate lubrication contribute to the successful installation and reliable operation of rolling contact bearings in various applications.

rolling contact bearing

Can you provide guidance on the selection and sizing of rolling contact bearings for specific applications?

Yes, I can provide guidance on the selection and sizing of rolling contact bearings for specific applications. Choosing the right rolling contact bearings involves considering various factors such as load requirements, operating conditions, speed, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing rolling contact bearings:

  1. Identify Application Requirements:

Start by identifying the specific requirements of your application. Consider factors such as the type and magnitude of the loads the bearing will be subjected to, the operating speed, and any special environmental conditions like temperature, moisture, or exposure to corrosive substances. Understanding these requirements is crucial as it forms the basis for selecting the appropriate rolling contact bearing.

  1. Analyze Load Conditions:

Next, analyze the load conditions acting on the bearing. Determine if the load is radial, axial, or a combination of both. Consider factors such as the magnitude, direction, and frequency of the load. This analysis helps in determining the appropriate bearing type, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, or tapered roller bearings, that can handle the specific load conditions effectively.

  1. Calculate Equivalent Load:

Calculate the equivalent load acting on the bearing. In cases where the load acting on the bearing is a combination of radial and axial loads, it is necessary to calculate the equivalent load. The equivalent load accounts for the differing effects of radial and axial loads on the bearing and helps in determining the required bearing size and capacity.

  1. Consider Speed and Operating Conditions:

Take into account the speed at which the bearing will operate and the specific operating conditions. Higher speeds may require bearings with special design features or materials to handle the increased centrifugal forces and temperature rise. Consider factors such as lubrication requirements, temperature limits, and any special considerations for factors like shock loads, vibrations, or misalignment. These factors influence the selection of appropriate bearing types and configurations.

  1. Consult Bearing Manufacturer’s Catalogs:

Refer to the catalogs or technical specifications provided by bearing manufacturers. These catalogs contain detailed information about various bearing types, sizes, load ratings, and performance characteristics. Use the information provided to narrow down the options based on your application requirements and load calculations.

  1. Verify Bearing Life:

Check the calculated bearing life to ensure it meets the required operational lifespan of your application. Bearing manufacturers provide life calculation formulas based on industry standards such as ISO or ABMA. These formulas take into account factors like load, speed, and reliability requirements to estimate the expected bearing life. Verify that the selected bearing will provide the desired operational lifespan under the given operating conditions.

  1. Consider Mounting and Dismounting:

Lastly, consider the ease of mounting and dismounting the bearing in your specific application. Evaluate factors such as the bearing’s fit tolerance, the required clearance or preload, and any special mounting or dismounting procedures. Ensure that the selected bearing can be easily installed and maintained in your application.

It is important to note that the selection and sizing of rolling contact bearings can be complex, and it is advisable to seek the assistance of bearing manufacturers, engineers, or experts in the field to ensure the optimal selection for your specific application.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China Standard High Precision Angular Contact Ball Bearings 7310 for Angular Contact Ball Bearing   bearing airChina Standard High Precision Angular Contact Ball Bearings 7310 for Angular Contact Ball Bearing   bearing air
editor by CX 2024-04-10