Tag Archives: bearing for

China best High Performance CZPT CZPT Alternatives C Series 7808 7809 7801 7802 7803 Angle 15 Angular Contact Ball Bearing for Textile Machinery manufacturer

Product Description


PRODUCT PICTURES:
 
OUR SERVICES
We can provide manufacturing capabilities and services of regular bearings for you, or customized non-standard bearings as you required.

 BEARING:
  — Dimensions
  — Material
  — Tolerance standard

APPEARANCE:
  — Logo (Laser Marking)
  — Package Design
40+ YEARS EXPERIENCE 
CONTINUOUS AND STABLE DELIVERY OF PRODUCTS.

With over 40 years experience of the bearing manufacturing, we know how to make good bearings with less cost consistently and efficiently.

We use advanced CNC turning, grinding, and superfinishing machines to ensure high, stable, and accurate machining.  All of your goods, from the most economical category, to the highest rated category, will always be manufactured precisely to the standards you require.

OWN HEAT TREATMENT 
CONTROALLABLE COST AND QUALITY.

Heat treatment is 1 of the crucial processes to ensure high performance of bearing materials. Compared with other manufacturers, we can produce higher quality bearings at smaller cost, with a more flexible and controllable production schedule, and in a shorter time

We have 6 heat treatment production lines.

Bearings are heated uniformly, with small deformation and little/no oxidized decarburization, which can make them have high hardness, high fatigue resistance, good wear resistance, dimensional stability, and excellent mechanical strength.

OUTSTXIHU (WEST LAKE) DIS.  QUALITY
LOW NOISE, LOW FRICTION AND LONG LIFE.

All our products are characterized by low noise, low friction and long life.  This is due to our attention to the roundness, waviness and surface roughness of bearing raceway.

Our products fully meets the requirements of national and international standards accorind to the testing result of
roughness, roundness, hardness, vibration noise, vibration velocity.
PACKING
PACKAGING THAT HELPS SELL.

1, Inner package
   Corrosion and Dust Proof PE plastic film  / bag packing + Tube packing, or Wrapping  tape for larger bearings.
2, Corrugated Individual Box
   Our attractive sales-helpful “3-JOYS” package, or as the design of your package.
3, Outer package
  Corrugated carton + Wooden pallet 
MODERN WELL-ORGANIZED WAREHOUSE

  · Constant temperature (20°C) and humidity (RH 52%) warehouse
  · Hundreds of models on hand, short delivery time.
HONOR & SYSTEM CERTIFICATES
EXHIBITION
SAMPLES POLICY 

 

FREE SAMPLES AND SHIPPING

 We are happy to send you free samples of our bearings for field   testing. All transportation costs will be paid by us.

 Please note: Depending on the model and value of samples,   this policy may not apply!

 Please contact our sales staff for details.

TRANSPORTATION
FASTEST DELIVERY TO CUSTOMERS
CUSTOMERS FEEDBACK

PAYMENT TERMS 
To facilitate your payment, we offer a variety of options! 
FAQ

1, About the lead time.
 
This depends on several factors, like Is the production schedule tight? Is there a corresponding model in stock, and is there enough of this model in stock? How many pcs of that model would be ordered?
Simply speaking, based on a 20′ GP container load:

If the model your Preferred is Sufficient stock Lead Time
Regular models YES Within 7 days
Regular models NO Within 30 days
Non-regular model NO About 50 days

For accurate estimate, please contact with our sale stuff. Thanks.

2, Minimum order quantity. 
  

Even just ONE piece of bearing is ok for us.

  
3, If you don’t know which model is the right choice…
  

We would like to give you some advise if you like, according to the real situation and demand of your local market. Our purpose is to help you to get proper and right models for your customers, so that you would make a better sales and income finally.

4, Factory Inspection

We surely would welcome you or your representatives to come to our plants or working offices to take a good look and chat with our hardworking CZPT employees. Ask our sales stuff and she/he will arrange that for you.

OPTIONS OF SPECIFICATION AND STHangZhouRD
 

Subject Symbol Description
Sealing & Sealing type Z Metal shield on 1 side.
ZZ Metal shields on both sides.
RS Rubber seal on 1 side.
2RS Rubber seals on both sides.
ZNR Shield on 1 side, snap ring groove in the outer ring, with snap ring on the opposite side of the shield
2ZNR Shield on both sides, snap ring groove in the outer ring, with snap ring
ZNBR Shield on 1 side, snap ring groove in the outer ring, with snap ring on the same side as the shield
Cage Materials J Pressed steel cages
M Solid brass cage
F Solid cage made from steel or iron
Y Pressed brass cages.
T Laminated phenolic cages.
TN Polyamide cages
TH Glass-fiber reinforced phenolic resin cages.
TV Polyamide cage
Cage Designs P Window-type cage
H Claw-type cage
A Cage guided on the bearing outer ring
B Cage-guided on the bearing inner ring
S Cage with lubricating slots in the guiding surfaces
D Carbonitriding cage
W Welded cage
R Riveted Cage
Cage Types N/A Claw-type cage
Ribbon cage
Crown cage
Sunflower cage
Tapered cage
Tolerances PN(P0) Bearings in standard tolerance
P6 Tighter tolerance than standard bearings
P5 Tolerance tighter than P6
P4 Tolerance tighter than P5
P2 Tolerance tighter than P4
Contact Angle C Contact angle 15˚.
AC Contact angle 25˚.
CA Contact angle 20˚.
E Contact angle 35˚.
B Contact angle 40˚.
Bearing Sets DB Two bearings: back-to-back.
DF Two bearings: face-to-face.
DT Two bearings: in tandem.
TBT Three bearings: tandem and back-to-back.
TFT Three bearings: tandem and face-to-face.
QFC Four bearings: tandem and face-to-face.
DB Two bearings: back-to-back.
DF Two bearings: face-to-face.

PRODUCT PARAMETERS

This tech sheet may not contain all or every piece of information you want to know. Please contact our sales staff to obtain or compare the information.
 

 

Designation Boundary Dimension (mm) Limiting Speed (rpm) Load Rating (Kn) Weight
 Designation Inner Diameter
(d)
Outside Diameter
(D)
Width
(B)
Grease Lubrication Oil Lubrication Dynamic Load
(cr)
Static Load
(cor)
Weight
(kg)
71800 10 19 5 75000 120000 1.8 1.1 0.005
71801 12 21 5 70000 110000 2 1.4 0.006
71802 15 24 5 60000 90000 2.2 1.8 0.007
71803 17 26 5 53000 80000 2.3 1.9 0.008
71804 20 32 7 45000 67000 3.9 3.4 0.018
71805 25 37 7 38000 56000 4.2 4.1 0.571
71806 30 42 7 32000 48000 4.4 4.8 0.571
71807 35 47 7 26000 40000 4.6 5.5 0.571
71808 40 52 7 24000 38000 4.8 6.2 0.032
71809 45 58 7 20000 34000 4.9 6.7 0.04
71810 50 65 7 18000 30000 7.4 10 0.052
71811 55 72 9 16000 26000 10.2 13.8 0.061
71812 60 78 10 15000 24000 13.4 18 0.1
71813 65 85 10 14000 22000 13.4 18.8 0.125
71814 70 90 10 13000 20000 13.8 20.3 0.133
71815 75 95 10 12000 19000 14.2 21.7 0.142
71816 80 100 10 10000 18000 14.5 23.1 0.15
71817 85 110 13 10000 17000 21.5 32.2 0.262
71818 90 115 13 9500 16000 21.7 33.5 0.274
71819 95 120 13 9000 15000 21.9 34.7 0.287
71820 100 125 13 8500 14000 22.5 37 0.301
71821 105 130 13 8500 14000 22.7 38.3 0.314
71822 110 140 16 8000 13000 31.8 51.6 0.496
71824 120 150 16 7000 11000 33.1 56.9 0.537
71826 130 165 18 6700 9000 38.7 67.6 0.782
71828 140 175 18 6000 8500 44.8 79.2 0.813
71830 150 190 20 5600 7500 51.2 92 1.14
71832 160 200 20 5000 7000 52.4 97.7 1.21
71834 170 215 22 4800 7000 66.5 123.4 1.61
71836 180 225 22 2000 2800 62.3 75.9 2
71838 190 240 24 1900 2600 75.1 91.6 2.1
71840 200 250 24 1800 2400 74.2 91.2 2.38
71844 220 270 24 1700 2200 76.4 97.8 2.8
71848 240 300 28 1500 1900 83.5 108 4.5

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

How do rolling contact bearings perform in high-speed or high-load applications?

Rolling contact bearings are designed to perform effectively in high-speed and high-load applications. Their specific design features and characteristics allow them to withstand the demands and challenges associated with these conditions. Here’s a detailed explanation of how rolling contact bearings perform in high-speed or high-load applications:

  • High-Speed Performance:

Rolling contact bearings are well-suited for high-speed applications due to their low friction characteristics. The rolling motion between the rolling elements and the raceways minimizes friction and heat generation, enabling smooth rotation at high speeds. The design of rolling contact bearings, including the selection of suitable materials and precision manufacturing, ensures the balance between load-carrying capacity and reduced friction at high speeds. As a result, these bearings can operate efficiently and reliably in applications such as electric motors, machine tools, turbochargers, and aerospace systems that require rapid and precise rotational motion.

  • High-Load Capacity:

Rolling contact bearings are engineered to handle high loads and distribute them effectively. The rolling elements in the bearings, such as balls or rollers, distribute the applied loads over a larger contact area, reducing stress concentrations and preventing premature failure. The materials used in rolling contact bearings, such as high-grade steels and specialized alloys, provide the necessary strength and durability to withstand heavy loads. Additionally, the design of the bearing, including the number and size of the rolling elements, the geometry of the raceways, and the cage construction, is optimized to maximize load-carrying capacity. This enables rolling contact bearings to perform reliably in high-load applications, including heavy machinery, automotive drivetrains, construction equipment, and industrial processes.

  • Lubrication for High-Speed and High-Load Conditions:

Lubrication is crucial for the performance of rolling contact bearings in high-speed or high-load applications. The lubricant helps reduce friction, dissipate heat, and prevent wear and damage to the bearing surfaces. For high-speed applications, specialized lubricants with low viscosity and high thermal stability are often used to ensure efficient lubrication and prevent excessive heat buildup. In high-load applications, lubrication plays a vital role in load distribution and reducing the risk of premature failure due to excessive stress. Proper lubrication selection and maintenance are essential to ensure optimal performance and longevity of rolling contact bearings under high-speed or high-load conditions.

  • Preload and Stiffness:

In certain high-speed or high-load applications, rolling contact bearings may be preloaded to enhance their stiffness and improve their performance. Preload is a controlled axial force applied to the bearing that eliminates internal clearances and minimizes deflection under load. By applying preload, the rolling contact bearings can maintain their dimensional stability, minimize vibration, and enhance their ability to handle high-speed or high-load conditions. Preload is commonly utilized in precision machine tools, spindle bearings, and other applications where rotational accuracy and rigidity are critical.

In summary, rolling contact bearings perform exceptionally well in high-speed or high-load applications. They are designed to minimize friction, handle heavy loads, and maintain operational integrity under demanding conditions. Through their low friction characteristics, high-load capacity, appropriate lubrication, and potential use of preload, rolling contact bearings ensure reliable and efficient operation in various industries and applications requiring high-speed or high-load capabilities.

rolling contact bearing

Can you provide guidance on the selection and sizing of rolling contact bearings for specific applications?

Yes, I can provide guidance on the selection and sizing of rolling contact bearings for specific applications. Choosing the right rolling contact bearings involves considering various factors such as load requirements, operating conditions, speed, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing rolling contact bearings:

  1. Identify Application Requirements:

Start by identifying the specific requirements of your application. Consider factors such as the type and magnitude of the loads the bearing will be subjected to, the operating speed, and any special environmental conditions like temperature, moisture, or exposure to corrosive substances. Understanding these requirements is crucial as it forms the basis for selecting the appropriate rolling contact bearing.

  1. Analyze Load Conditions:

Next, analyze the load conditions acting on the bearing. Determine if the load is radial, axial, or a combination of both. Consider factors such as the magnitude, direction, and frequency of the load. This analysis helps in determining the appropriate bearing type, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, or tapered roller bearings, that can handle the specific load conditions effectively.

  1. Calculate Equivalent Load:

Calculate the equivalent load acting on the bearing. In cases where the load acting on the bearing is a combination of radial and axial loads, it is necessary to calculate the equivalent load. The equivalent load accounts for the differing effects of radial and axial loads on the bearing and helps in determining the required bearing size and capacity.

  1. Consider Speed and Operating Conditions:

Take into account the speed at which the bearing will operate and the specific operating conditions. Higher speeds may require bearings with special design features or materials to handle the increased centrifugal forces and temperature rise. Consider factors such as lubrication requirements, temperature limits, and any special considerations for factors like shock loads, vibrations, or misalignment. These factors influence the selection of appropriate bearing types and configurations.

  1. Consult Bearing Manufacturer’s Catalogs:

Refer to the catalogs or technical specifications provided by bearing manufacturers. These catalogs contain detailed information about various bearing types, sizes, load ratings, and performance characteristics. Use the information provided to narrow down the options based on your application requirements and load calculations.

  1. Verify Bearing Life:

Check the calculated bearing life to ensure it meets the required operational lifespan of your application. Bearing manufacturers provide life calculation formulas based on industry standards such as ISO or ABMA. These formulas take into account factors like load, speed, and reliability requirements to estimate the expected bearing life. Verify that the selected bearing will provide the desired operational lifespan under the given operating conditions.

  1. Consider Mounting and Dismounting:

Lastly, consider the ease of mounting and dismounting the bearing in your specific application. Evaluate factors such as the bearing’s fit tolerance, the required clearance or preload, and any special mounting or dismounting procedures. Ensure that the selected bearing can be easily installed and maintained in your application.

It is important to note that the selection and sizing of rolling contact bearings can be complex, and it is advisable to seek the assistance of bearing manufacturers, engineers, or experts in the field to ensure the optimal selection for your specific application.

rolling contact bearing

Can you explain the key characteristics and benefits of rolling contact bearings?

Rolling contact bearings possess several key characteristics and offer numerous benefits in mechanical systems. Here’s a detailed explanation of these characteristics and benefits:

  • Key Characteristics of Rolling Contact Bearings:

The key characteristics of rolling contact bearings include:

  • Low Friction: Rolling contact bearings utilize rolling elements, such as balls or rollers, which reduce friction compared to sliding contact bearings. This characteristic minimizes energy losses, heat generation, and wear, resulting in improved efficiency and performance of the mechanical system.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, minimizing stress concentrations and preventing premature wear or failure. This characteristic allows mechanical systems to handle various loads and forces without compromising performance.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. The rolling elements facilitate low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This characteristic is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials, making them adaptable and versatile in various mechanical systems. They can accommodate different load capacities, speeds, and environmental conditions, providing flexibility in design and application.
  • Durability: Rolling contact bearings are designed to withstand the demands of various operating conditions. They are constructed with high-quality materials and undergo extensive testing to ensure durability and long service life.
  • Reduced Maintenance: Rolling contact bearings require minimal maintenance compared to other types of bearings. Proper lubrication and periodic inspection are typically sufficient to ensure their reliable operation over an extended period.
  • Benefits of Rolling Contact Bearings:

The utilization of rolling contact bearings offers several benefits in mechanical systems:

  • Efficiency: Rolling contact bearings reduce friction and energy losses, resulting in improved overall system efficiency. This benefit translates to energy savings, reduced operating costs, and increased productivity.
  • Smooth Operation: Rolling contact bearings enable smooth and controlled motion, minimizing vibration, noise, and unwanted movement. This benefit enhances the comfort, precision, and reliability of the mechanical system.
  • Extended Service Life: Rolling contact bearings, when properly selected, installed, and maintained, can provide long service life. Their ability to distribute loads and resist wear ensures reliable operation and reduces the frequency of replacements or repairs.
  • Wide Range of Applications: Rolling contact bearings are utilized in various industries and applications, including automotive, aerospace, industrial machinery, appliances, and more. Their versatility and availability in different sizes and configurations make them suitable for diverse mechanical systems.
  • Cost-Effectiveness: Rolling contact bearings offer a cost-effective solution for many applications. Their initial cost is typically lower compared to other types of bearings, and their long service life reduces maintenance and replacement expenses over time.

In summary, rolling contact bearings possess key characteristics such as low friction, load distribution, smooth motion, positional accuracy, versatility, durability, and reduced maintenance. Their benefits include improved efficiency, smooth operation, extended service life, wide application range, and cost-effectiveness. By utilizing rolling contact bearings in mechanical systems, designers and engineers can achieve reliable and efficient performance across various industries and applications.

China best High Performance CZPT CZPT Alternatives C Series 7808 7809 7801 7802 7803 Angle 15 Angular Contact Ball Bearing for Textile Machinery   manufacturerChina best High Performance CZPT CZPT Alternatives C Series 7808 7809 7801 7802 7803 Angle 15 Angular Contact Ball Bearing for Textile Machinery   manufacturer
editor by CX 2024-05-14

China factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle wheel bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

What are the common types of rolling contact bearings, such as ball bearings or roller bearings?

Rolling contact bearings are available in various types, each designed to accommodate specific load capacities, speeds, and application requirements. The most common types of rolling contact bearings include ball bearings and roller bearings. Here’s a detailed explanation of these common types:

  • Ball Bearings:

Ball bearings are the most widely used type of rolling contact bearings. They consist of one or more rows of balls placed between two rings—an inner ring and an outer ring. The balls roll along the raceways formed on the rings, enabling smooth and low-friction rotation. Ball bearings are known for their high rotational speeds, low starting torque, and relatively low load capacity compared to roller bearings.

There are several variations within the category of ball bearings, including:

  • Deep Groove Ball Bearings: These ball bearings have deep raceway grooves, allowing them to accommodate both radial and axial loads. They are commonly used in applications such as electric motors, appliances, and automotive components.
  • Angular Contact Ball Bearings: Angular contact ball bearings can handle both radial and axial loads. They have an angled contact surface between the balls and the raceways, enabling them to support higher axial loads and facilitate combined radial and axial movements. These bearings are often used in machine tools, pumps, and gearboxes.
  • Thrust Ball Bearings: Thrust ball bearings are designed to support axial loads in a single direction. They consist of two rings with a set of balls sandwiched between them. Thrust ball bearings are commonly used in applications such as automotive transmissions and steering systems.
  • Roller Bearings:

Roller bearings, as the name implies, utilize cylindrical or tapered rollers instead of balls to facilitate motion. Roller bearings are capable of handling higher loads and are often used in heavy-duty applications. The common types of roller bearings include:

  • Cylindrical Roller Bearings: Cylindrical roller bearings feature cylindrical rollers that provide a large contact area with the raceways. They can accommodate high radial loads and moderate axial loads. Cylindrical roller bearings are commonly used in applications such as machine tool spindles, electric motors, and gearboxes.
  • Tapered Roller Bearings: Tapered roller bearings consist of tapered rollers and inner and outer rings with tapered raceways. They can support both radial and axial loads in a single direction. Tapered roller bearings are commonly used in automotive wheel bearings, heavy machinery, and construction equipment.
  • Spherical Roller Bearings: Spherical roller bearings have barrel-shaped rollers and two raceways on the inner and outer rings that are inclined relative to the bearing axis. This design allows them to accommodate misalignment and axial displacement. Spherical roller bearings are commonly used in applications with heavy loads, such as mining equipment, paper mills, and crushers.
  • Needle Roller Bearings: Needle roller bearings use long, thin rollers that have a high length-to-diameter ratio. They are suitable for applications with limited radial space and high load capacity. Needle roller bearings are commonly used in automotive transmissions, industrial gearboxes, and motorcycle engines.

These are some of the common types of rolling contact bearings, including ball bearings and roller bearings. Each type has its own advantages and is suitable for specific applications based on factors such as load requirements, speed, and space limitations.

China factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle   wheel bearingChina factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle   wheel bearing
editor by CX 2024-05-14

China Best Sales CZPT 7211c/Acskf P4 Angular Contact Ball Bearing for Water Pump carrier bearing

Product Description

Product Description

Bearing No. HXB 7211C/AC P4 Angular Contact Ball Bearing-radial ball bearing

·Dimensions: 55x100x21mm
·Rubber seal on both sides
·100% Chrome Steel for higher resistance and durability
·Supports 16500 rpm with grease, 20000 rpm with oil
·Our high-quality bearing is made to reduce your replacement frequency and maintenance cost

Specifications for this item

Bearing Type: angular contact ball bearing-high speed electric motor bearing,water pump bearing,spindle bearing 
Brand: HXB or OEM brand
Material: chrome steel GCr15, AISL52100, SUJ2
Part No.: 7211-AC-T-P4, 7211-C-T-P4, 7211-C-T-HQ1-P4, 7211-AC-T-HQ1-P4
Precision Class: P4, P5
Application: electric motor, motorcycle, household appliance, electric tools, water pump

Designation Boundary dimensions Dimensions Weight Load rating Speed value Preload/axial rigidity Spring  preload Designation
  d D B d1 d2 D1 D2 r1,2 r3,4 m C C0 noil ngrease Fv Cax Fv Cax Fv Cax Ff  
55mm 55mm
71911 C TA 55 80 13 63.1   71.9 74.5  1.0  0.3  0.181  18400 17100 25000 18500 90 52 280 87 560 122 470 71911 C TA
71911 AC TA 55 80 13 63.1   71.9 74.5  1.0  0.3  0.181  17400 16200 21500 16000 150 130 440 193 880 257 635 71911 AC TA
H71911 C-2RZ TA 55 80 13 63.1   71.9 74.5  1.0  0.3  0.181  13600 9400 29500 22000 70 49 210 75 420 100 465 H71911 C-2RZ TA
H71911 C-2RZ HQ1 TA 55 80 13 63.1 61.8 72.9 74.5  1.0  0.3  0.181  10000 7500 31000 23000 50 50 150 75 300 99 360 H71911 C-2RZ HQ1 TA
H71911 AC-2RZ HQ1 TA 55 80 13 63.1 61.8 72.9 74.5  1.0  0.3  0.181  9600 7150 28500 21500 80 104 240 154 480 199 460 H71911 AC-2RZ HQ1 TA
7011 C TA 55 90 18 66.8   78.2 81.9  1.1  1.0  0.374  32500 29500 23500 17500 160 69 490 115 980 163 830 7011 C TA
7011 AC TA 55 90 18 66.8   78.2 81.9  1.1  1.0  0.374  30500 28000 20000 15000 260 167 770 253 1540 337 1110 7011 AC TA
H7011 C-2RZ TA 55 90 18 66.8   78.2 81.9  1.1  1.0  0.374  23100 15500 27500 20500 115 52 350 81 700 110 695 H7011 C-2RZ TA
H7011 C-2RZ HQ1 TA 55 90 18 66.8 65.6 79.2 82.4  1.1  1.0  0.374  16700 11400 29500 22000 80 55 250 84 500 111 600 H7011 C-2RZ HQ1 TA
H7011 AC-2RZ HQ1 TA 55 90 18 66.8 65.6 79.2 82.4  1.1  1.0  0.374  15900 10800 26500 20000 130 115 400 172 800 223 760 H7011 AC-2RZ HQ1 TA
7211 C TA 55 100 21 69.0    85.8 91.6  1.5  1.0  0.621  58000 46000 22000 16500 300 83 900 139 1800 199 1480 7211 C TA
7211 AC TA 55 100 21 69.0    85.8 91.6  1.5  1.0  0.621  55500 44000 18500 14000 470 198 1400 300 2800 404 2571 7211 AC TA

Application

 

Company Profile

Established in 1995, as a leading ball bearing manufacturer in China, HXB offers more than 1,000 kinds of ball bearing to fulfill our customers’ needs. With excellent production team and technical team, we can supply high quality products consistently.
After more than 20 years of development, HXB’s main products involves deep groove ball bearings, angular contact ball bearings, high precision spindle bearings, etc. Our bearings are wildly used in electric motors, machinery tool spindle, CNC, NEVs and other fields.
 

Certificates

Package

Exibition

FQA

1. Are you trading company or manufacturer?
    We are factory more than 28 years.
2. What application do your products involved in?
    Our products application fields mainly include motor, water pumps, household appliances, automobiles, motorcycles, power tools, engraving machines,reducers, machine tools, CNC machine centers, textile machinery, woodworking machinery, ets.
3. Can you make OEM products?
  Yes, we can do OEM according to clients needs, develop and produce products according to drawings or sample provided by clients. We also have our brand HXB or YJB.
4. Does your company have quality assurance? 
   Yes, for 1 year.
5. What’s the competitiveness of your company’s products compared to the companies?
   High precision, high speed, low noise.
6. How does the goods ship to customer?
   By sea, by train, by air or express.
7.What is the production capacity of your company?
  We have 48 productions lines. Annual output has reached 33,000,000pcs.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Precision Class: P4
Grease: Bld-K
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China Best Sales CZPT 7211c/Acskf P4 Angular Contact Ball Bearing for Water Pump   carrier bearingChina Best Sales CZPT 7211c/Acskf P4 Angular Contact Ball Bearing for Water Pump   carrier bearing
editor by CX 2024-05-13

China Standard Four Point Contact Ball Bearing 230.21.0775.013 Fast Shipping Swing Circle Bearing for Harbour Machinery drive shaft bearing

Product Description

Four Point Contact Ball Bearing 230.21.571.013 Fast Shipping Swing Circle Bearing For Harbour Machinery

Four-point contact ball slewing turntable bearings
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing CZPT to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Customization:
Available

|

Customized Request

rolling contact bearing

Are there specific industries or applications where rolling contact bearings are frequently used?

Rolling contact bearings find extensive use in various industries and applications due to their versatility, load-carrying capacity, and efficiency. Here’s a detailed explanation of some specific industries and applications where rolling contact bearings are frequently employed:

  • Automotive Industry:

The automotive industry extensively utilizes rolling contact bearings in various components and systems. These bearings are found in engines, transmissions, wheel hubs, suspension systems, steering columns, and different drivetrain components. In the automotive sector, rolling contact bearings provide reliable support for rotating shafts, facilitate smooth wheel rotation, and contribute to overall vehicle performance and safety.

  • Aerospace Industry:

Rolling contact bearings play a critical role in the aerospace industry, where they are used in aircraft engines, landing gear systems, control surfaces, and various other applications. These bearings provide reliable and precise rotation in demanding aerospace environments, contributing to the safety, efficiency, and performance of aircraft.

  • Industrial Machinery:

Rolling contact bearings are widely employed in a broad range of industrial machinery. They are found in machine tools, industrial pumps, compressors, conveyors, printing machines, textile machinery, and many other equipment types. These bearings support the rotating components of machinery, enabling smooth and efficient operation while withstanding heavy loads and high speeds.

  • Power Generation:

In the power generation sector, rolling contact bearings are utilized in turbines, generators, wind turbines, and other power generation equipment. These bearings withstand the rotational forces and high temperatures associated with power generation, contributing to the efficient conversion of mechanical energy into electrical energy.

  • Mining and Construction:

Rolling contact bearings are widely used in mining and construction equipment, such as crushers, conveyors, excavators, and bulldozers. These bearings are designed to handle heavy loads, shock loads, and harsh operating conditions commonly encountered in mining and construction applications.

  • Railway Industry:

In the railway industry, rolling contact bearings are utilized in locomotives, passenger trains, freight cars, and rail infrastructure. These bearings support the axles, wheels, and other rotating components of railway systems, ensuring smooth and reliable operation while withstanding the dynamic forces and heavy loads associated with rail transportation.

  • Wind Energy:

The wind energy sector relies on rolling contact bearings in wind turbines. These bearings support the rotor shaft, allowing efficient rotation of the turbine blades to convert wind energy into electrical power. Rolling contact bearings in wind turbines are subjected to high axial and radial loads, as well as challenging environmental conditions.

These are just a few examples of the industries and applications where rolling contact bearings are frequently used. They are also employed in countless other sectors, including marine, agriculture, medical equipment, robotics, and more. The versatility and effectiveness of rolling contact bearings make them an essential component in a wide range of machinery and equipment across various industries.

rolling contact bearing

What is the role of cage design and materials in rolling contact bearing performance and durability?

The cage design and materials used in rolling contact bearings play a crucial role in their performance and durability. Here’s a detailed explanation of the role of cage design and materials in rolling contact bearing performance and durability:

  • Function of the Cage:

The cage, also known as the bearing retainer or separator, holds and separates the rolling elements in a rolling contact bearing. Its primary function is to maintain the proper spacing and alignment of the rolling elements, allowing them to roll smoothly and distribute the load evenly. The cage prevents the rolling elements from contacting each other, reducing friction, wear, and the risk of damage. By guiding the rolling elements, the cage also helps to minimize the centrifugal forces and maintain stability at high speeds. The design and materials of the cage directly influence these functions and, consequently, the overall performance and durability of the bearing.

  • Cage Design Considerations:

The design of the cage is carefully considered to ensure optimal bearing performance and durability. Some key design considerations include:

  • Material Compatibility: The cage material must be compatible with the operating conditions and lubricants used in the bearing. It should have sufficient strength, hardness, and resistance to wear and fatigue. Different applications may require cages made from materials such as steel, brass, synthetic polymers, or composite materials.
  • Friction and Heat Generation: The cage design should minimize friction between the rolling elements and the cage itself. Reduced friction helps improve energy efficiency, reduce heat generation, and extend the bearing’s service life.
  • Load Distribution: The cage design should facilitate even load distribution among the rolling elements. This ensures that the forces acting on the bearing are evenly distributed, reducing stress concentrations and the risk of premature failure.
  • High-Speed Capability: The cage design should be optimized to handle high-speed applications. It should be lightweight, promote efficient lubricant flow, and minimize windage losses caused by air turbulence at high rotational speeds.
  • Alignment and Stability: The cage design should promote proper alignment and stability of the rolling elements, especially during rapid accelerations, decelerations, or changes in direction. This helps maintain smooth operation and prevents the rolling elements from skewing or becoming misaligned.
  • Cage Material Selection:

The choice of cage material depends on factors such as the operating conditions, load requirements, lubrication, and cost considerations. Commonly used cage materials include:

  • Steel: Steel cages offer excellent strength, durability, and resistance to high temperatures. They are commonly used in applications with heavy loads, high speeds, and high operating temperatures.
  • Brass: Brass cages provide good strength, corrosion resistance, and low friction. They are suitable for applications where low noise and vibration levels are important, such as in precision instruments and industrial machinery.
  • Synthetic Polymers: Synthetic polymer cages, such as polyamide (nylon) or polyetheretherketone (PEEK), offer advantages such as low friction, lightweight, corrosion resistance, and the ability to dampen vibrations. They are commonly used in applications where reducing friction, noise, and weight are critical, such as in automotive and aerospace industries.
  • Composite Materials: Composite cages combine different materials to achieve specific properties such as high strength, low friction, or resistance to harsh environments. These cages are used in specialized applications where unique material properties are required.

The selection of the cage design and materials is a critical aspect of rolling contact bearing design. Careful consideration of the operating conditions, load requirements, speed, and other factors helps ensure optimal performance, reliability, and durability of the bearing.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China Standard Four Point Contact Ball Bearing 230.21.0775.013 Fast Shipping Swing Circle Bearing for Harbour Machinery   drive shaft bearingChina Standard Four Point Contact Ball Bearing 230.21.0775.013 Fast Shipping Swing Circle Bearing for Harbour Machinery   drive shaft bearing
editor by CX 2024-05-13

China OEM 03-0260-00 Swing Bearing Ball Bearing for Machinery Spare Parts bearing assembly

Product Description


Production Description for Slewing Bearing, ring bearing, rolling bearings, turntables, swing bearing

Slewing Bearing 03-0260-00   for construction machinery, cranes,shipyard crane
 

1 Type single row 4 point contact ball slewing bearing, ring bearing, slewing gear
2 Bore diameter 190mm
3 Outside diameter 329mm
4 Height 45mm
5 Material 42CrMo, 50Mn
6 Precision P0. P6. P5.
7 Cage/retainer Nylon or aluminum
8 Gear type gearless
9 N.W. 17KGS

External Diameter Internal Diameter Height  Weight  Reference  
234 125 25 5 STD 
290 150 41.5 14 STD 
300 140 52 16 STD 
329 190 45 17 STD 
350 190 52 20 STD 
403.5 235 55 26 STD 
440 240 60 37 STD 
440 265 50 29 STD 
455 265 71 45 STD 
474 336 46 24 STD 
475 335 45 30 STD 
486 342 56 29   SLBP
500 305 75 51 STD 
518 304 56 23 SL
589 383 75 66 STD 
616 472 56 38 SLBP
626 424 72 70 STD 
648 434 56 34 SL
700 479 77 90 STD 
712 487 72 91 STD 
716 572 56 45 SLBP
748 534 56 40 SL
816 672 56 52 SLBP
816 573 90 137 STD 
848 634 56 46 SL
900 670 86 148 STD 
916 772 56 60 SLBP
948 734 56 52 SL
979 717 100 193 STD 
1016 872 56 67   SLBP
1048 834 56 58 SL
1130 845 100 271 STD 
1144 869 100 248 STD 
1166 1571 56 78 SLBP
1198 984 56 67 SL

Why choose CZPT slewing bearings
A pioneer in slewing bearing field, rich experience, can do design, produce, mounting guide
Small order accepted
ISO certified company
Variorum models
7*24hours hotline to help you with your cranes
Strict quality control system to ensure quality for slewing bearing

LYHY Slewing Bearing Types
LYHY slewing bearings can be divided into the following types as per  their structures:
single row 4 point contact ball slewing bearing,
single row cross roller slewing bearing,
double row different ball diameter slewing bearing,
three row cylindrical roller slewing bearing and roller/ball combination slewing bearing.
And all these types of slewing bearings can be further divided into bearings without gears, bearings with external gears and bearings with internal gears.

Detailed description of these types slewing bearings

Single row 4 point contact ball slewing bearings
     This kind of slewing bearings can support high dynamic loads, transmitting axial and radial forces simultaneously as well as the resulting tilting moments. Applications of this kind of bearings are hoisting, mechanical handling and general mechanical engineering etc.
Single row cross roller slewing bearings
     This kind of bearings can support combinations of large radial force, medium axial force and tilting moment with small or zero clearance. Main applications of this kind of bearings are hoisting and mechanical handling and general mechanical engineering etc.
Double row different ball diameter slewing bearings
     This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.
Triple row cylindrical roller slewing bearings
     This kind of bearings has high load carrying capacity. Under same loads, this kind of bearings has much smaller diameters which can make the installation much compact, as different kinds of loads are supported by different races and rollers. Main applications of this kind of bearings are hoisting, mechanical handling, mining and materials handling, offshore technology and general mechanical engineering etc.
Roller/ball combination slewing bearings
     This kind of bearings can support high axial load and low tilting moments. Usually they are large diameter slewing bearings. Applications of this kind of bearings are mining and materials handling etc.

About CZPT bearings
1.introduction:we are a manufacturer of slewing bearing since 1993, our factory occupies a area of 30000square meters with 4 workshop and 1 office building. 
2. Featured products: slewing bearing and slewing drive
3. Capital: Current is 1 million RMB, but we are increasing the capital to 10 million RMB
4. Workers: 40
5. Certificate: ISO9001:2008, 3.1 certificate, CCS certificate, Science and Technology Progress Award
6. Annual Exportation: 8million USD
7. Exported countries: (39)
Asia: India, Pakistan, Iran, Signore, Georgia, Malaysia, Vietnam, Thailand, Philippines, Israel, Korea, UAE, Sri Lanka, Saudi Arabia,
Europe: Turkey, Russia, Spain, Czech Republic, Italy, Poland, Slovakia, Bosnia and Herzegovina, Austria, France, Germany, Switzerland, Finland, Ukraine, UK
America: USA, Canada, Mexico, Brazil, Puerto Rico, Peru, Chile
Africa: South Africa, Egypt
Oceania: Australia

Production Process of CZPT slewing bearings

Quality Control Process of CZPT slewing bearings

LYHY Slewing Bearing Packing 
Bearing surface is covered with the anti-rust oil first; and then wrapped with the plastic film;
And then packed with kraft paper and professional belts;
At last, with wooden box totally at the outer packing to invoid the rust or the moist;
We can depend on the customers  demand to be packed;

Slewing Ring Bearings——Applications:
Slewing ring bearings are widely used in industry and known as “the machine joints” Here under is the specific slewing bearing applications
1. Construction machinery (e.g. cranes, excavators, loader, scraper)
2. Metallurgical machinery (e.g. for steel plant)
3. Heavy machinery equipment (e.g. mining machinery, concrete machinery)
4. Marine machinery equipment (e.g. vessel, port hoisting machine, port oil transfer equipment, onshore and offshore crane)
5. Light machinery equipment (e.g. paper machine, plastic, rubber machine, weave machine)
6. Wind power generator
7. Packing machinery

Transportation:
All CZPT slewing ring bearings can be usually delivered timely, usual production time is 15-50 days based on different slew bearings diameters, sometimes slew rings will be in stock.
Slewing bearings can be offered different delivery terms, such as EXW, FOB, CIF, DDU and so on.
Also, slewing rings can be transported by different transport ways, by express (such as DHL, TNT, UPS, FEDEX and so on), by air, by sea, by truck, by railway and so on.

INSTALLATION OF CZPT SLEWING BEARINGS

Preparation:
Make sure that the model is correct and slewing bearing isn’t damaged during transportation.
2.  Check the appearance and rotational state of the bearing, such as rotational precision clearance, rotating flexibility, seals position, lubrication grease etc.
3.  The installation datum plane and bracket installing plane should be clean, grease, burr, paint and other foreign body should be wiped off.

Installation:

1. The screws in the installing plane should be fit with the mounting holes in the slewing bearing
2.  The slewing bearing has a soft zone marked with an “s” on the upper surface, when installing the bearing, it is important to ensure that this area is placed in a non-load or infrequent load zone.
3.  When the bearing is placed on the supporting frame work it is important to check the interface between these 2 surfaces. This check should be carried out with the insertion of feel gauges between the 2 surfaces. If a gap should exist then it is recommended to plane/resurface the effective area so as to remove the gap.
4.  Install slewing bearing with high strength screws, and choose appropriate strength bolts. All bolts are required to be tightened evenly. The sequence of this tightening process is shown in Pic. Welding of bearing is not allowed, in the event of welding any adjacent parts, heat transfer shall be avoided so as to cause the bearing to become deformed or change the hardness.
5.  After installation, the bearing should be rotated to check for smooth operation and any emission of unusual noise. If either of the aforementioned are noted, then the bearing should be adjusted to eliminate them. The teeth of the largest run-out are coated with green paint.

FAQ:

Q: Are LYHY BEARINGS trading company or manufacturer?
A: CZPT BEARINGS is a professional manufacturer for slewing bearings, thin section bearings, ball bearings and rolling bearings

Q: How do LYHY BEARINGS control quality of their bearing?
A: LYHY BEARINGS has established strict quality control systems, all the products and services has passed ISO9001-2008 Quality Certificate and third party such as CCS, LR,ABS,BV

Q: What is the MOQ?
A: MOQ is 1pc, pls message us for detailed information.

Q: How about the package for CZPT bearings?
A: Standard Industrial packing in general condition (Plastic tube+ professional plastic belts+ plywood case). Accept design package when OEM.

Q: How long is the production time?
A: It takes about 7-40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have your own forwarder.

Q: Is sample available?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable for LYHY BEARINGS. We can design as per your requirements and use your own LOGO and package design.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Four Point Contact Ball
Material: 50mn, 42CrMo
Type: External Gear
Samples:
US$ 160/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Are there specific industries or applications where rolling contact bearings are frequently used?

Rolling contact bearings find extensive use in various industries and applications due to their versatility, load-carrying capacity, and efficiency. Here’s a detailed explanation of some specific industries and applications where rolling contact bearings are frequently employed:

  • Automotive Industry:

The automotive industry extensively utilizes rolling contact bearings in various components and systems. These bearings are found in engines, transmissions, wheel hubs, suspension systems, steering columns, and different drivetrain components. In the automotive sector, rolling contact bearings provide reliable support for rotating shafts, facilitate smooth wheel rotation, and contribute to overall vehicle performance and safety.

  • Aerospace Industry:

Rolling contact bearings play a critical role in the aerospace industry, where they are used in aircraft engines, landing gear systems, control surfaces, and various other applications. These bearings provide reliable and precise rotation in demanding aerospace environments, contributing to the safety, efficiency, and performance of aircraft.

  • Industrial Machinery:

Rolling contact bearings are widely employed in a broad range of industrial machinery. They are found in machine tools, industrial pumps, compressors, conveyors, printing machines, textile machinery, and many other equipment types. These bearings support the rotating components of machinery, enabling smooth and efficient operation while withstanding heavy loads and high speeds.

  • Power Generation:

In the power generation sector, rolling contact bearings are utilized in turbines, generators, wind turbines, and other power generation equipment. These bearings withstand the rotational forces and high temperatures associated with power generation, contributing to the efficient conversion of mechanical energy into electrical energy.

  • Mining and Construction:

Rolling contact bearings are widely used in mining and construction equipment, such as crushers, conveyors, excavators, and bulldozers. These bearings are designed to handle heavy loads, shock loads, and harsh operating conditions commonly encountered in mining and construction applications.

  • Railway Industry:

In the railway industry, rolling contact bearings are utilized in locomotives, passenger trains, freight cars, and rail infrastructure. These bearings support the axles, wheels, and other rotating components of railway systems, ensuring smooth and reliable operation while withstanding the dynamic forces and heavy loads associated with rail transportation.

  • Wind Energy:

The wind energy sector relies on rolling contact bearings in wind turbines. These bearings support the rotor shaft, allowing efficient rotation of the turbine blades to convert wind energy into electrical power. Rolling contact bearings in wind turbines are subjected to high axial and radial loads, as well as challenging environmental conditions.

These are just a few examples of the industries and applications where rolling contact bearings are frequently used. They are also employed in countless other sectors, including marine, agriculture, medical equipment, robotics, and more. The versatility and effectiveness of rolling contact bearings make them an essential component in a wide range of machinery and equipment across various industries.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

Can you explain the key characteristics and benefits of rolling contact bearings?

Rolling contact bearings possess several key characteristics and offer numerous benefits in mechanical systems. Here’s a detailed explanation of these characteristics and benefits:

  • Key Characteristics of Rolling Contact Bearings:

The key characteristics of rolling contact bearings include:

  • Low Friction: Rolling contact bearings utilize rolling elements, such as balls or rollers, which reduce friction compared to sliding contact bearings. This characteristic minimizes energy losses, heat generation, and wear, resulting in improved efficiency and performance of the mechanical system.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, minimizing stress concentrations and preventing premature wear or failure. This characteristic allows mechanical systems to handle various loads and forces without compromising performance.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. The rolling elements facilitate low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This characteristic is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials, making them adaptable and versatile in various mechanical systems. They can accommodate different load capacities, speeds, and environmental conditions, providing flexibility in design and application.
  • Durability: Rolling contact bearings are designed to withstand the demands of various operating conditions. They are constructed with high-quality materials and undergo extensive testing to ensure durability and long service life.
  • Reduced Maintenance: Rolling contact bearings require minimal maintenance compared to other types of bearings. Proper lubrication and periodic inspection are typically sufficient to ensure their reliable operation over an extended period.
  • Benefits of Rolling Contact Bearings:

The utilization of rolling contact bearings offers several benefits in mechanical systems:

  • Efficiency: Rolling contact bearings reduce friction and energy losses, resulting in improved overall system efficiency. This benefit translates to energy savings, reduced operating costs, and increased productivity.
  • Smooth Operation: Rolling contact bearings enable smooth and controlled motion, minimizing vibration, noise, and unwanted movement. This benefit enhances the comfort, precision, and reliability of the mechanical system.
  • Extended Service Life: Rolling contact bearings, when properly selected, installed, and maintained, can provide long service life. Their ability to distribute loads and resist wear ensures reliable operation and reduces the frequency of replacements or repairs.
  • Wide Range of Applications: Rolling contact bearings are utilized in various industries and applications, including automotive, aerospace, industrial machinery, appliances, and more. Their versatility and availability in different sizes and configurations make them suitable for diverse mechanical systems.
  • Cost-Effectiveness: Rolling contact bearings offer a cost-effective solution for many applications. Their initial cost is typically lower compared to other types of bearings, and their long service life reduces maintenance and replacement expenses over time.

In summary, rolling contact bearings possess key characteristics such as low friction, load distribution, smooth motion, positional accuracy, versatility, durability, and reduced maintenance. Their benefits include improved efficiency, smooth operation, extended service life, wide application range, and cost-effectiveness. By utilizing rolling contact bearings in mechanical systems, designers and engineers can achieve reliable and efficient performance across various industries and applications.

China OEM 03-0260-00 Swing Bearing Ball Bearing for Machinery Spare Parts   bearing assemblyChina OEM 03-0260-00 Swing Bearing Ball Bearing for Machinery Spare Parts   bearing assembly
editor by CX 2024-05-09

China supplier Best Price Angular Contact Ball Bearing 7308AC 7309AC 7310AC 7311AC for Machine Tool Spindle, High Frequency Motor bearing driver kit

Product Description

 

Product Description

The characteristic of angular contact bearing is that it can bear both radial load and single axial load. The larger the contact Angle, the larger the axial load, the smaller the contact Angle, the smaller the axial load. Conversely, the smaller the contact Angle, the greater the ability to bear radial loads, and the more suitable for high-speed applications. According to different working conditions, it can be combined in a variety of ways to obtain different radial and axial load capacity, and meet the requirements of high speed and diameter, and high axial stiffness.

Angular contact ball bearing accuracy class includes dimensional tolerance and rotation accuracy. From low to high accuracy is expressed as P0(ordinary), P6(P6X), P5, P4, P2, in addition, P3, P7, P9 are also used in European and American brands to indicate accuracy levels, P3 is equivalent to level P6 of ISO and JS standards, P7 is equivalent to level P4, and P9 is equivalent to level P2.

Product Parameters

Product Specification

Single Row Angular Contact Ball Bearing

Bearing type Boundary Dimensions(mm) Load Rating
(kn)
Speed Rating(ipm) Weight
New Model Old Model    d D B Dymamic Cr Static Cor Grease
lubrication
Oil
lubrication
Weight
(kg)
7000AC 46100 10 26 8 5 2.35 34000 42000 0.571
7001AC 46101 12 28 8 5.4 2.75 29000 37000 0.571
7002AC 46102 15 32 9 6.1 3.45 26000 32000 0.035
7003AC 46103 17 35 10 6.75 4.15 23000 28000 0.045
7004AC 46104 20 42 12 10.3 6.1 19000 24000 0.079
7005AC 46105 25 47 12 11.3 7.4 17000 21000 0.091
7006AC 46106 30 55 13 14.5 10.1 14000 18000 0.133
7007AC 46107 35 62 14 17.5 12.6 12000 15000 0.17
7008AC 46108 40 68 15 18.7 14.6 11000 14000 0.21
7009AC 46109 45 75 16 22.2 17.7 10000 12000 0.26
7571AC 46110 50 80 16 23.6 20.1 9200 11000 0.29
7011AC 46111 55 90 18 31.1 26.3 8300 10000 0.42
7012AC 46112 60 95 18 31.9 28.1 7700 9700 0.45
7013AC 46113 65 100 18 33.7 31.4 7200 9000 0.47
7014AC 46114 70 110 20 42.7 39.4   8300 0.66
7015AC 46115 75 115 20 43.6 41.7 6300 7800 0.69
7016AC 46116 80 125 22 53.4 50.6 5800 7200 0.93
7017AC 46117 85 130 22 54.6 53.7 5500 6800 0.97
7018AC 46118 90 140 24 65.2 63.3 5100 6400 1.26
7019AC 46119 95 145 24 66.6 67.1 4800 6000 1.32
7571AC 46120 100 150 24 68.4 70.6 4700 5900 1.37
7571AC 46121 105 160 26 79.8 81.9 4400 5500 1.73
7571AC 46122 110 170 28 91.9 92.8 4200 5200 2.14
7571AC 46124 120 180 28 96.6 103 3900 4900 2.27
7026AC 46126 130 200 33 117 125 3500 4400 3.43
7571AC 46128 140 210 33 120 133 3300 4100 3.64
7030AC 46130 150 225 35 137 154 3000 3800 4.43
7032AC 46132 160 240 38         5.02
7034AC 46134 170 260 42 186 214 2600 3200 7.56
7038AC 46138 190 290 46 217 268 2300 2800 10.8
7040AC 46140 200 310 51 244 309 2100 2600 12.7

 

Bearing type Boundary Dimensions(mm) Load Rating
(kn)
Speed Rating(ipm) Weight
New Model Old Model    d D B Dymamic Cr Static Cor Grease
lubrication
Oil
lubrication
Weight
(kg)
7200AC 46200 10 30 9 4.65 2.2 29000 37000 0.031
7201AC 46201 12 32 10 7.45 3.65 27000 34000 0.038
7202AC 46202 15 35 11 8.1 4.25 24000 29000 0.048
7203AC 46203 17 40 12 10.2 5.5 21000 26000 0.07
7204AC 46204 20 47 14 14.5 8.4 17000 22000 0.112
7205AC 46205 25 52 15 15.3 9.5 15000 19000 0.135
7206AC 46206 30 62 16 21.3 13.7 13000 16000 0.208
7207AC 46207 35 72 17 28.1 18.6 11000 14000 0.295
7208AC 46208 40 80 18 33.6 23.3 10000 12000 0.382
7209AC 46209 45 85 19 37.7 26.6 9400 12000 0.43
7210AC 46210 50 90 20 39.4 41.3 8500 11000 0.485
7211AC 46211 55 700 21 48.7 37.1 7600 9500 0.635
7212AC 46212 60 110 22 58.9 45.7 6900 8600 0.82
7213AC 46213 65 120 23 67.3 54.2 6400 8000 1.02
7214AC 46214 70 125 24 69.8 55.6 6100 7600 1.12
7215AC 46215 75 130 25 79.2 65.2 5800 7200 1.23
7216AC 46216 80 140 26 85.3 71.5 5400 6700 1.5
7217AC 46217 85 150 28 98.6 83.6 5000 6300 1.87
7218AC 46218 90 760 30 113 96.7 4700 5900 2.3
7219AC 46219 95 770 32 122 103 4400 5500 2.78
7220AC 46220 100 180 34 137 117 4100 5200 3.32
7221AC 46221 105 190 36 149 132 3900 4900 3.95
7222AC 46222 110 200 38 162 148 3700 4600 4.65
7224AC 46224 130 215 40 174 166 3400 4300 5.49
7226AC 46226 130 230 40 196 198 3200 4000 6.21
7228AC 46228 140 250 42 218 234 2900 3600 7.76
7232AC 46232 160 290 48 230 263 2500 3100 12.1
7234AC 46234 170 370 52 272 331 2300 2800 15.1
7236AC 46236 180 320 52 293 362 2200 2700 15.7
7240AC 46240 200 360 58 324 432 1900 2400 22.4
7244AC 46244 220 400 65 358 482 1100 1600 38.5

 

Bearing type Boundary Dimensions(mm) Load Rating Speed Rating(ipm) Weight
(kn)
New Model Old Model    d D B Dymamic Cr Static Cor Grease Oil Weight
lubrication lubrication (kg)
7300AC 46300 10 35 11 8.5 3.75 27000 33000 0.054
7301AC 46301 12 37 12 10.2 4.6 24000 31000 0.065
7302AC 46302 15 42 13 12.5 6.45 20000 25000 0.088
7303AC 46303 17 47 14 14.9 7.9 18000 23000 0.12
7304AC 46304 20 52 15 17.4 9.4 17000 21000 0.15
7305AC 46305 25 62 17 24.8 14.4 14000 17000 0.243
7306AC 46306 30 72 19 30.1 18.9 12000 14000 0.362
7307AC 46307 35 80 21 35.4 22 10000 13000 0.475
7308AC 46308 40 90 23 43.2 27.4 9200 12000 0.657
7309AC 46309 45 100 25 55.1 37.1 8200 10000 0.875
7310AC 46310 50 170 27 70.1 48.7 7300 9100 1.14
7311AC 46311 55 120 29 80.9 56.5 6700 8400 1.45
7312AC 46312 60 130 31 92.5 65.6 6200 7700 1.81
7313AC 46313 65 140 33 105 75.3 5800 7200 2.22
7314AC 46314 70 150 35 118 85.8 5400 6700 2.7
7315AC 46315 75 160 37 128 97 5000 6300 3.15
7316AC 46316 80 170 39 139 109 4700 5900 3.85
7317AC 46317 85 180 41 150 122 4400 5500 4.53
7318AC 46318 90 190 43 161 135 4200 5200 5
7319AC 46319 95 200 45 172 149 4000 4900 6.12
7320AC 46320 100 215 47 184 161 3600 4600 7.53
7321AC 46321 105 225 49 208 193 3500 4400 8.62
7322AC 46322 110 240 50 232 226 3200 4000 10.7
7324AC 46324 120 260 55 246 252 3000 3700 12.6
7326AC 46326 130 280 58 301 329 2700 3400 15.4
7328AC 46328 140 300 62 329 374 2500 3200 18.8
7330AC 46330 150 320 65 348 414 2300 2900 22.4
7332AC 46332 160 340 68 365 455 2200 2700 26.4
7334AC 46334 170 360 72 389 485 2000 2500 31.2
7336AC 46336 180 380 75 409 534 1900 2400 40
7338AC 46338 190 400 78 450 598 1800 2200 45.5
7340AC 46340 200 420 80 474 658 1700 2100 52
 
7406AC 46406 30 90 23   0.960
7407AC 46407 35 100 25   1.140
7408AC 46408 40 110 27   1.400
7409AC 46409 45 120 29   1.800
7410AC 46410 50 130 31   2.250
7411AC 46411 55 140 33   2.750
7412AC 46412 60 150 35   3.400
7413AC 46413 65 160 37   4.200
7414AC 46414 70 180 42   5.800
7415AC 46415 75 190 45   7.000
7416AC 46416 80 200 48   8.000

 

Bearing type Boundary Dimensions(mm) Load Rating
(kn)
Speed Rating(ipm) Weight
New Model Old Model    d D B Dymamic Cr Static Cor Grease
lubrication
Oil
lubrication
Weight
(kg)
7204BTN 66204 20 47 14 14.5 8.4 17000 22000 0.112
7205BTN 66205 25 52 15 15.3 9.5 15000 19000 0.135
7206BTN 66206 30 62 16 21.3 13.7 13000 16000 0.208
7207BTN 66207 35 72 17 28.1 18.9 11000 14000 0.295
7208BTN 66208 40 80 18 33.6 23.3 10000 12000 0.382
7209BTN 66209 45 85 19 37.7 27 9400 12000 0.43
7210BTN 66210 50 90 20 39.4 41.3 8500 11000 0.485
7211BTN 66211 55 100 21 48.7 37.1 7600 9500 0.635
7212BTN 66212 60 110 22 58.9 45.7 6900 8600 0.82
7213BTN 66213 65 120 23 67.3 54.2 6400 8000 1.02
7214BTN 66214 70 125 24 69.8 55.6 6100 7600 1.12
7215BTN 66215 75 130 25 79.2 65.2 5800 7200 1.23
7216BTN 66216 80 140 36 85.3 71.5 5400 6700 1.5
7217BTN 66217 85 150 28 98.6 83.6 5000 6300 1.87
7218BTN 66218 90 160 30 113 96.7 4700 5900 2.3
7219BTN 66219 95 170 32 122 103 4400 5500 2.78
7220BTN 66220 100 180 34 137 117 4700 5200 3.32
7221BTN 66221 105 190 36 149 132 3900 4900 3.95
7222BTN 66222 110 200 38 162 148 3700 4600 4.65
7224BTN 66224 120 215 40 174 166 3400 4300 5.49
7226BTN 66226 130 230 40 196 198 3200 4000 6.21
7228BTN 66228 140 250 42 218 234 2900 3600 7.76

 

Bearing type Boundary Dimensions(mm) Load Rating Speed Rating(ipm) Weight
(kn)
New Model Old Model    d D B Dymamic Cr Static Cor Grease Oil Weight
lubrication lubrication (kg)
7303BTN 66303 17 47 14 14.9 7.9 18000 23000 0.12
7304BTN 66304 20 52 15 17.4 9.4 17000 21000 0.15
7305BTN 66305 25 62 17 24.8 14.4 14000 77000 0.243
7306BTN 66306 30 72 19 30.1 19 12000 14000 0.362
7307BTN 66307 35 80 21 35.4 22 10000 13000 0.475
7308BTN 66308 40 90 23 43.2 27.4 9200 12000 0.657
7309BTN 66309 45 100 25 55.1 37.1 8200 10000 0.875
7310BTN 66310 50 110 27 70.1 48.1 7300 9100 1.14
7311BTN 66311 55 120 29 80.9 56.5 6700 8400 1.45
7312BTN 66312 60 130 31 92.5 65.6 6200 7700 1.81
7313BTN 66313 65 140 33 105 75.3 5800 7200 2.22
7314BTN 66314 70 150 35 118 85.8 5400 6700 2.7
7315BTN 66315 75 160 37 128 97 5000 6300 3.15
7316BTN 66316 80 170 39 139 109 4700 5900 3.85
7317BTN 66317 85 180 41 150 122 4400 5500 4.53
7318BTN 66318 90 190 43 161 135 4200 5200 5.3
7319BTN 66319 95 200 45 172 149 4000 4900 6.12
7320BTN 66320 100 215 47 184 161 3600 4600 7.53
7321BTN 66321 105 225 49 208 193 3500 4400 8.62
7322BTN 66322 110 240 50 232 226 3200 4000 10.1
7324BTN 66324 120 260 55 246 252 3000 3700 12.6

 

Company Profile

HangZhou solarich machinery Co., Ltd. is a professional manufacturer of bearings, specialized in the research and development of high precision angular contact ball bearings, double row angular contact ball bearings, ball screw bearings.
Our company in accordance with ISO international standards and GB national standards organization production, adhere to the “integrity, dedication, innovation, beyond” spirit of enterprise, “one heart, consistent, first-class” business philosophy, determined to choose reasonable quality axis for customers.
Products are widely used in: machine tool, precision machinery spindle, aviation, gas turbine, high frequency motor, high speed motor, air compressor, oil pump, printing machinery and other fields. The company promises to reasonable commodity prices, fast logistics delivery, quality service, and strong technical force, won the support and trust of customers, and truly realize the CZPT situation between the company and customers. Quality and development, is our pursuit.

Solutions

Single row angular contact ball bearings: machine tool spindle, high frequency motor, gas turbine, centrifugal separator, small car front wheel, differential pinion shaft, booster pump, drilling platform, food machinery, dividing head, repair welding machine, low noise type cooling tower, electromechanical equipment, painting equipment, machine slot plate, arc welding machine

Double row angular contact ball bearings: oil pump, Roots blower, air compressor, various transmission, fuel injection pump, printing machinery, planetary reducer, extraction equipment, cycloidal reducer, food packaging machinery, electric welding machine, electric soldering iron, square box, gravity spray gun, wire stripping machine, half shaft, inspection and analysis equipment, fine chemical machinery.

Our Advantages

1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 
 

Packaging & Shipping

 

FAQ

 

Q: Are you trading company or manufacturer?
A: We are bearing manufacturer.

Q: How do you control quality of bearing?
A: All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail  for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days., depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

China supplier Best Price Angular Contact Ball Bearing 7308AC 7309AC 7310AC 7311AC for Machine Tool Spindle, High Frequency Motor   bearing driver kitChina supplier Best Price Angular Contact Ball Bearing 7308AC 7309AC 7310AC 7311AC for Machine Tool Spindle, High Frequency Motor   bearing driver kit
editor by CX 2024-05-09

China supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane double row ball bearing

Product Description

Slew Gear 061.20.571.100.11.1503 Four Point Contact Ball Bearing For JIB Crane

Four-point contact ball slewing turntable bearings
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing CZPT to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Customization:
Available

|

Customized Request

rolling contact bearing

Can you explain the installation and alignment considerations for rolling contact bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of rolling contact bearings. Incorrect installation or misalignment can lead to premature wear, increased friction, reduced load-carrying capacity, and potential bearing failure. Here’s a detailed explanation of the installation and alignment considerations for rolling contact bearings:

  • Clean and Proper Workspace:

Before installing rolling contact bearings, it is essential to ensure a clean and suitable workspace. The work area should be free from dirt, dust, debris, and contaminants that could enter the bearing during installation. Contamination can cause damage to the bearing surfaces and compromise its performance. Additionally, the workspace should have appropriate tools and equipment to facilitate the installation process, including bearing pullers, mounting tools, and measurement instruments.

  • Handling and Storage:

Rolling contact bearings should be handled with care to prevent damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from moisture, dust, and extreme temperatures. During handling, it is important to avoid dropping or impacting the bearings, as this can cause surface damage or internal defects. Proper handling and storage practices help maintain the integrity of the bearings and ensure their performance during installation.

  • Shaft and Housing Preparation:

Prior to installing the rolling contact bearings, the shaft and housing surfaces must be prepared appropriately. The shaft and housing should be clean, free from burrs, and have the correct dimensions and tolerances specified by the bearing manufacturer. Any roughness or irregularities on the shaft or housing can affect the fit and alignment of the bearing, leading to performance issues. It may be necessary to use appropriate tools, such as emery cloth or a deburring tool, to smooth the surfaces and ensure proper fitment.

  • Bearing Mounting:

When mounting rolling contact bearings, it is essential to follow the manufacturer’s recommended procedures and guidelines. This includes using the appropriate mounting tools and techniques to apply the necessary axial or radial force evenly during installation. Overloading or uneven force application can lead to bearing damage or misalignment. Proper mounting techniques may involve using a press, heat, or specialized mounting tools to ensure the bearing is seated securely and accurately on the shaft or in the housing.

  • Alignment:

Accurate alignment of rolling contact bearings is critical for their optimal performance. Misalignment can cause increased friction, premature wear, and reduced load-carrying capacity. It is important to align the bearing with respect to the shaft and housing to ensure proper concentricity and parallelism. Alignment methods may include visual alignment, feeler gauges, dial indicators, laser alignment systems, or other precision alignment tools. The specific alignment requirements may vary depending on the bearing type, application, and manufacturer recommendations.

  • Lubrication:

Proper lubrication is essential during the installation of rolling contact bearings. The bearing manufacturer’s recommendations should be followed regarding the type, quantity, and method of lubrication. Lubrication helps reduce friction, dissipate heat, and protect against wear and corrosion. It is important to ensure that the bearing is adequately lubricated during installation to facilitate smooth operation and prevent damage.

  • Verification and Testing:

After installation, it is recommended to verify the proper fitment, alignment, and operation of the rolling contact bearings. This may involve checking the axial and radial clearances, measuring runout, and performing functional tests to ensure smooth rotation and proper load distribution. Verification and testing help confirm the successful installation and identify any potential issues that may require adjustment or corrective action.

In summary, proper installation and alignment considerations are essential for the optimal performance and longevity of rolling contact bearings. Following recommended procedures, handling the bearings carefully, preparing the shaft and housing surfaces, ensuring accurate alignment, and providing appropriate lubrication contribute to the successful installation and reliable operation of rolling contact bearings in various applications.

rolling contact bearing

Can you provide guidance on the selection and sizing of rolling contact bearings for specific applications?

Yes, I can provide guidance on the selection and sizing of rolling contact bearings for specific applications. Choosing the right rolling contact bearings involves considering various factors such as load requirements, operating conditions, speed, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing rolling contact bearings:

  1. Identify Application Requirements:

Start by identifying the specific requirements of your application. Consider factors such as the type and magnitude of the loads the bearing will be subjected to, the operating speed, and any special environmental conditions like temperature, moisture, or exposure to corrosive substances. Understanding these requirements is crucial as it forms the basis for selecting the appropriate rolling contact bearing.

  1. Analyze Load Conditions:

Next, analyze the load conditions acting on the bearing. Determine if the load is radial, axial, or a combination of both. Consider factors such as the magnitude, direction, and frequency of the load. This analysis helps in determining the appropriate bearing type, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, or tapered roller bearings, that can handle the specific load conditions effectively.

  1. Calculate Equivalent Load:

Calculate the equivalent load acting on the bearing. In cases where the load acting on the bearing is a combination of radial and axial loads, it is necessary to calculate the equivalent load. The equivalent load accounts for the differing effects of radial and axial loads on the bearing and helps in determining the required bearing size and capacity.

  1. Consider Speed and Operating Conditions:

Take into account the speed at which the bearing will operate and the specific operating conditions. Higher speeds may require bearings with special design features or materials to handle the increased centrifugal forces and temperature rise. Consider factors such as lubrication requirements, temperature limits, and any special considerations for factors like shock loads, vibrations, or misalignment. These factors influence the selection of appropriate bearing types and configurations.

  1. Consult Bearing Manufacturer’s Catalogs:

Refer to the catalogs or technical specifications provided by bearing manufacturers. These catalogs contain detailed information about various bearing types, sizes, load ratings, and performance characteristics. Use the information provided to narrow down the options based on your application requirements and load calculations.

  1. Verify Bearing Life:

Check the calculated bearing life to ensure it meets the required operational lifespan of your application. Bearing manufacturers provide life calculation formulas based on industry standards such as ISO or ABMA. These formulas take into account factors like load, speed, and reliability requirements to estimate the expected bearing life. Verify that the selected bearing will provide the desired operational lifespan under the given operating conditions.

  1. Consider Mounting and Dismounting:

Lastly, consider the ease of mounting and dismounting the bearing in your specific application. Evaluate factors such as the bearing’s fit tolerance, the required clearance or preload, and any special mounting or dismounting procedures. Ensure that the selected bearing can be easily installed and maintained in your application.

It is important to note that the selection and sizing of rolling contact bearings can be complex, and it is advisable to seek the assistance of bearing manufacturers, engineers, or experts in the field to ensure the optimal selection for your specific application.

rolling contact bearing

What are rolling contact bearings, and how are they utilized in mechanical systems?

Rolling contact bearings are mechanical components used to facilitate smooth and efficient motion between two or more parts in a mechanical system. They utilize rolling elements, such as balls or rollers, to minimize friction and enable relative motion between the rotating or moving parts. Here’s a detailed explanation of rolling contact bearings and their utilization in mechanical systems:

  • Definition and Construction:

Rolling contact bearings consist of an inner ring, an outer ring, rolling elements (balls or rollers), and a cage or retainer that holds the rolling elements in position. The inner and outer rings have raceways, which are carefully machined surfaces that guide the rolling elements. The rolling elements roll between the raceways, reducing friction and enabling smooth rotation or linear motion.

  • Types of Rolling Contact Bearings:

There are various types of rolling contact bearings, including:

  • Ball Bearings: These bearings use spherical balls as rolling elements and are suitable for applications with light to moderate loads and high-speed requirements. Ball bearings are commonly used in motors, fans, household appliances, and automotive applications.
  • Roller Bearings: Roller bearings use cylindrical or tapered rollers as rolling elements. They can handle higher loads and provide better shock absorption than ball bearings. Roller bearings are often found in heavy machinery, construction equipment, and industrial applications.
  • Needle Bearings: Needle bearings are a type of roller bearing with long, thin rollers. They have a high load capacity and are used in applications where space is limited and high radial load support is required.
  • Thrust Bearings: Thrust bearings are designed to support axial loads and allow for rotational or linear motion in the axial direction. They are commonly used in automotive transmissions, machine tools, and thrust applications.
  • Tapered Roller Bearings: Tapered roller bearings have conical rollers and are designed to handle both radial and axial loads. They are commonly used in wheel bearings, gearboxes, and heavy-duty applications.
  • Utilization in Mechanical Systems:

Rolling contact bearings are utilized in various mechanical systems for several reasons:

  • Reduced Friction: By utilizing rolling elements, rolling contact bearings minimize friction compared to sliding contact bearings. This reduces energy losses, heat generation, and wear, resulting in improved efficiency and extended service life of the mechanical system.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. They allow for low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, reducing stress concentrations and preventing premature wear or failure. This enables mechanical systems to handle various loads and forces without compromising performance.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials to suit a wide range of applications. They can accommodate different load capacities, speeds, and environmental conditions, making them adaptable and versatile in various mechanical systems.

In summary, rolling contact bearings are essential components in mechanical systems. They utilize rolling elements to minimize friction, enable smooth motion, distribute loads, and provide positional accuracy. By utilizing rolling contact bearings, mechanical systems can achieve efficient and reliable operation in a wide range of applications, from small appliances to heavy machinery and industrial equipment.

China supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane   double row ball bearingChina supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane   double row ball bearing
editor by CX 2024-05-08

China Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing bearing block

Product Description

 

Angular contact ball bearing

Angular Contact Ball Bearings can bear radial load and axial load at the same time. It can work at higher speeds. The larger the contact angle, the higher the axial load carrying capacity. The contact angle is the angle between the line of contact points between the ball and the raceway in the radial plane and the vertical line of the bearing axis. High-precision and high-speed bearings usually take a contact angle of 15 degrees. Under the action of axial force, the contact angle will increase.

Company Profile

In 2013, 1 associates decided to create an innovative sales service of bearings to satisfy diffierent kinds of application.

In order to supply even more stable quality to our vast customers, we established a factory in HangZhou city, ZHangZhoug province, China, near HangZhou and ZheJiang port, which has recognized by special ISO. The various bearings we produce there have been inspected and confirmed by SGS to be RoHS compliant.

In order to satisfy our customer’s diffierent industrial requirement: Advises, quick quotations, quick delievery, difficullt sourcing bearing products, the best suitable bearing(price, quality), We are working with over 300 suppliers to make sure to get the perfect part for you. We strive to offer the most precise and most suitable bearing for each part.

We Registered “GNYAR” in 2014, registered “MAJC” in 2018, both was received in high-performance praise, and earned high reputation among customers from motorcycle parts, auto parts and embroidery machine spare parts, Power tools, agricultural machine, bicycle, Semiconductor Facilities. Fitness Equipments, Toys, fishing, industrial using design.

After years of development, we believe that by establishing a mutually beneficial relationship with our customers we can both continue to grow and prosper, we wish and hope to always grant you satisfaction.

Other products

Product application

Packaging & Shipping

 

FAQ

 

Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibility when defective product is found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we are CZPT to customize housings in different styles, and sizes in different brands, we also customize circuit board & packaging box as per your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Normal
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing   bearing blockChina Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing   bearing block
editor by CX 2024-05-08

China factory Fsk 5610/2500 11689/2500 Thrust Angular Contact Ball Bearing 2500*2700*160 mm for Oilfield Tools bearing and race

Product Description

FSK 5610/2500 11689/2500 Thrust Angular Contact Ball Bearing 2500*2700*160 mm For Oilfield Tools

Bearing Specification :

Model Number 5610/2500
Alternative Number 11689/2500
Part Name Angular Contact Ball Bearing
Brand FSK / KBE / SKB / OEM
Material Gcr15 Chrome Steel
Number of Row Single Row
Dimensions(mm)(d*D*b) 2500*2700*160 mm
Weight / Mass ( KG ) 732 KG
HS Code  8482800000
Original Country Show CHINA

Bearings Detailed Pictures:

Same Series Bearings We Offer:

Bearing d D H m
569164 9168164 320 mm 400 mm 48 mm 12.1 KG
569164/YB2 9168764K 330 mm 410 mm 45 mm 10.5 KG
569176/YB2 9168776K 380 mm 470 mm 50 mm 15.8 KG
569184 9168184 420 mm 500 mm 48 mm 15.9 KG
567284 7168284 420 mm 580 mm 73 mm 51 KG
569188 9168188 440 mm 540 mm 60 mm 25.5 KG
5691/500 91681/500 500 mm 600 mm 60 mm 25.3 KG
5617/520 1687/520 520 mm 620 mm 60 mm 29.7 KG
5692/530 91682/530 530 mm 710 mm 109 mm 93.9 KG
5692/530/YB2 91682/530K 530 mm 710 mm 109 mm 108 KG
5617/560 1687/560 560 mm 740 mm 89 mm 77 KG
5617/562 1688/562 562 mm 632 mm 40 mm 12.2 KG
5691/600 9168/600 600 mm 710 mm 67 mm 37.6 KG
5617/610 1687/610 610 mm 790 mm 89 mm 86 KG
1688/620 5617/620 620 mm 700 mm 50 mm 95.2 KG
5617/620 1687/620 620 mm 780 mm 102 mm 95.2 KG
5617/650 1687/650 650 mm 880 mm 140 mm 194 KG
5692/670 91682/670 670 mm 900 mm 140 mm 206 KG
5691/750 91681/750 750 mm 900 mm 90 mm 94.4 KG
5611/800 1681/800 800 mm 950 mm 120 mm 140 KG
5692/800 91682/800 800 mm 1060 mm 155 mm 293 KG
5617/810 1687/810 810 mm 1030 mm 110 mm 176 KG
5691/950 91682/950 950 mm 1250 mm 180 mm 432 KG
5691/1000 91681/1000 1000 mm 1180 mm 109 mm 177 KG
5691/1120 91681/1120 1120 mm 1320 mm 122 mm 241 KG
5617/1600 1687/1600 1600 mm 1760 mm 90 mm 248 KG
5617/1860 1687/1860 1860 mm 2100 mm 140 mm 577 KG
5610/2500 11689/2500 2500 mm 2700 mm 160 mm 732 KG
5617/3000/YA 1687/3000 3000 mm 3270 mm 140 mm 1262 KG

Other Bearings We Offer:

Deep groove ball bearings Linear ball bearings Pillow block bearings Clutch release bearings
Cylindrical roller bearings Needle roller bearings Thrust ball bearings Thrust roller bearings
Spherical roller bearings Ball joint bearings Conveyor roller bearings Angular contact ball bearings

Our Advantage:

About FSK Factory Condition :

FAQ:
1.How can I get the bearing price?
Mike: You can leave your message on Alibaba, or conact us directly by email, , SkYPE, Viber. Tell us your quantity, usually 2-5 hours you will get the price.
2.How can I buy them?
Mike: You can place order on Alibaba, or pay the payment by Western Union, Paypal, T/T and L/C.
3. How long I can get these bearings?
Mike: for small order, we will delivery the bearings in 1-2 days after recive your payment. usually 3-5 days will arrive in your place by international express, such as DHL, TNT, UPS and so on. For big order, please contact us.
4.How to protect the bearing quality?
Mike: All procudts passed ISO9001:2008 and ISO14000 certificates. we can accept small sample order, you can check the quality.
5. Other service.
Mike: We can offer OEM service according to your demand.
 
FSK Bearing Company Advantages:
(1) We have first-class testing equipment to detect bearing various data parameters and control the quality of the bearing.
Whenever bearings must first detected whether the quality is qualified and the unqualified bearing will be eliminated directly.
So we can get the trust of a large number of customers, and supply them for several years.
(2) We have our own R & D capabilities, to help customers solve the problem of non-standard bearings.
We can also according to customer requirements change their own mark.
(3) Price, our manufacture ensure that our prices across China are quite competitive.
It is better for you to compare prices and quality among suppliers.
But everyone knows you can not buy the highest quality products with the lowest price,
but our product is the best quality if you use equal price.
 
FSK Cooperation Details
Delivery:
For Small weight or ungent ,we send by express UPS,DHL,FEDEX, or EMS,china post with Thracking number
For max production , we will ship by sea/air.
Payment Item:
TT, 30% deposit , 70% before shippment.
L/C At Sight
Paypal Or Western Union In advance
Service:
Trade Assurance
Payment Protection
Timely Delivery Guaranteed
Product Qualtity Protection

 

 

FSK 5610/2500 11689/2500 Thrust Angular Contact Ball Bearing 2500*2700*160 mm For Oilfield Tools, Get Cheap Price From China Bearing Factory Now !

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45
Aligning: Aligning Bearing
Separated: Separated
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China factory Fsk 5610/2500 11689/2500 Thrust Angular Contact Ball Bearing 2500*2700*160 mm for Oilfield Tools   bearing and raceChina factory Fsk 5610/2500 11689/2500 Thrust Angular Contact Ball Bearing 2500*2700*160 mm for Oilfield Tools   bearing and race
editor by CX 2024-05-03

China factory Best Price Angular Contact Ball Bearing 7032/dB7034/dB7036/dB7038/dB7040/dB for Machine Tool Spindle, High Frequency Motor connecting rod bearing

Product Description

Product Description

production name Angular contact ball bearing Single row ground
brand AUTO/OEM/SEMRI
Model Number 71952C/AC/B 
Dimension 260*360*46mm
Basic dynamic load rating 246 KN
Basic static load rating 351 KN
Attainable speed for grease lubrication 3500 1/min
Attainable speed for oil-air lubrication 5200 1/min
Ring Material Gcr15/ Carbon Steel/ Stainless Steel/ Si3N4/ ZrO2
Cage Material  Steel/ Brass/ Nylon/ Custom
Precision P6 P5 P4 P2
Vibration  
Clearance  C0,C2,C3, or as requested 
Quality standard ISO9001:2000/ SGS

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Thrust Bearing
Material: Cast Iron
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China factory Best Price Angular Contact Ball Bearing 7032/dB7034/dB7036/dB7038/dB7040/dB for Machine Tool Spindle, High Frequency Motor   connecting rod bearingChina factory Best Price Angular Contact Ball Bearing 7032/dB7034/dB7036/dB7038/dB7040/dB for Machine Tool Spindle, High Frequency Motor   connecting rod bearing
editor by CX 2024-05-02