Tag Archives: spindle bearing

China factory Angular Contact Ball Bearings Spindle Bearings 7405acm 7406acm 7407acm 7408acm 7409acm drive shaft bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

What are the common types of rolling contact bearings, such as ball bearings or roller bearings?

Rolling contact bearings are available in various types, each designed to accommodate specific load capacities, speeds, and application requirements. The most common types of rolling contact bearings include ball bearings and roller bearings. Here’s a detailed explanation of these common types:

  • Ball Bearings:

Ball bearings are the most widely used type of rolling contact bearings. They consist of one or more rows of balls placed between two rings—an inner ring and an outer ring. The balls roll along the raceways formed on the rings, enabling smooth and low-friction rotation. Ball bearings are known for their high rotational speeds, low starting torque, and relatively low load capacity compared to roller bearings.

There are several variations within the category of ball bearings, including:

  • Deep Groove Ball Bearings: These ball bearings have deep raceway grooves, allowing them to accommodate both radial and axial loads. They are commonly used in applications such as electric motors, appliances, and automotive components.
  • Angular Contact Ball Bearings: Angular contact ball bearings can handle both radial and axial loads. They have an angled contact surface between the balls and the raceways, enabling them to support higher axial loads and facilitate combined radial and axial movements. These bearings are often used in machine tools, pumps, and gearboxes.
  • Thrust Ball Bearings: Thrust ball bearings are designed to support axial loads in a single direction. They consist of two rings with a set of balls sandwiched between them. Thrust ball bearings are commonly used in applications such as automotive transmissions and steering systems.
  • Roller Bearings:

Roller bearings, as the name implies, utilize cylindrical or tapered rollers instead of balls to facilitate motion. Roller bearings are capable of handling higher loads and are often used in heavy-duty applications. The common types of roller bearings include:

  • Cylindrical Roller Bearings: Cylindrical roller bearings feature cylindrical rollers that provide a large contact area with the raceways. They can accommodate high radial loads and moderate axial loads. Cylindrical roller bearings are commonly used in applications such as machine tool spindles, electric motors, and gearboxes.
  • Tapered Roller Bearings: Tapered roller bearings consist of tapered rollers and inner and outer rings with tapered raceways. They can support both radial and axial loads in a single direction. Tapered roller bearings are commonly used in automotive wheel bearings, heavy machinery, and construction equipment.
  • Spherical Roller Bearings: Spherical roller bearings have barrel-shaped rollers and two raceways on the inner and outer rings that are inclined relative to the bearing axis. This design allows them to accommodate misalignment and axial displacement. Spherical roller bearings are commonly used in applications with heavy loads, such as mining equipment, paper mills, and crushers.
  • Needle Roller Bearings: Needle roller bearings use long, thin rollers that have a high length-to-diameter ratio. They are suitable for applications with limited radial space and high load capacity. Needle roller bearings are commonly used in automotive transmissions, industrial gearboxes, and motorcycle engines.

These are some of the common types of rolling contact bearings, including ball bearings and roller bearings. Each type has its own advantages and is suitable for specific applications based on factors such as load requirements, speed, and space limitations.

China factory Angular Contact Ball Bearings Spindle Bearings 7405acm 7406acm 7407acm 7408acm 7409acm   drive shaft bearingChina factory Angular Contact Ball Bearings Spindle Bearings 7405acm 7406acm 7407acm 7408acm 7409acm   drive shaft bearing
editor by CX 2024-05-14

China factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle wheel bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

What are the common types of rolling contact bearings, such as ball bearings or roller bearings?

Rolling contact bearings are available in various types, each designed to accommodate specific load capacities, speeds, and application requirements. The most common types of rolling contact bearings include ball bearings and roller bearings. Here’s a detailed explanation of these common types:

  • Ball Bearings:

Ball bearings are the most widely used type of rolling contact bearings. They consist of one or more rows of balls placed between two rings—an inner ring and an outer ring. The balls roll along the raceways formed on the rings, enabling smooth and low-friction rotation. Ball bearings are known for their high rotational speeds, low starting torque, and relatively low load capacity compared to roller bearings.

There are several variations within the category of ball bearings, including:

  • Deep Groove Ball Bearings: These ball bearings have deep raceway grooves, allowing them to accommodate both radial and axial loads. They are commonly used in applications such as electric motors, appliances, and automotive components.
  • Angular Contact Ball Bearings: Angular contact ball bearings can handle both radial and axial loads. They have an angled contact surface between the balls and the raceways, enabling them to support higher axial loads and facilitate combined radial and axial movements. These bearings are often used in machine tools, pumps, and gearboxes.
  • Thrust Ball Bearings: Thrust ball bearings are designed to support axial loads in a single direction. They consist of two rings with a set of balls sandwiched between them. Thrust ball bearings are commonly used in applications such as automotive transmissions and steering systems.
  • Roller Bearings:

Roller bearings, as the name implies, utilize cylindrical or tapered rollers instead of balls to facilitate motion. Roller bearings are capable of handling higher loads and are often used in heavy-duty applications. The common types of roller bearings include:

  • Cylindrical Roller Bearings: Cylindrical roller bearings feature cylindrical rollers that provide a large contact area with the raceways. They can accommodate high radial loads and moderate axial loads. Cylindrical roller bearings are commonly used in applications such as machine tool spindles, electric motors, and gearboxes.
  • Tapered Roller Bearings: Tapered roller bearings consist of tapered rollers and inner and outer rings with tapered raceways. They can support both radial and axial loads in a single direction. Tapered roller bearings are commonly used in automotive wheel bearings, heavy machinery, and construction equipment.
  • Spherical Roller Bearings: Spherical roller bearings have barrel-shaped rollers and two raceways on the inner and outer rings that are inclined relative to the bearing axis. This design allows them to accommodate misalignment and axial displacement. Spherical roller bearings are commonly used in applications with heavy loads, such as mining equipment, paper mills, and crushers.
  • Needle Roller Bearings: Needle roller bearings use long, thin rollers that have a high length-to-diameter ratio. They are suitable for applications with limited radial space and high load capacity. Needle roller bearings are commonly used in automotive transmissions, industrial gearboxes, and motorcycle engines.

These are some of the common types of rolling contact bearings, including ball bearings and roller bearings. Each type has its own advantages and is suitable for specific applications based on factors such as load requirements, speed, and space limitations.

China factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle   wheel bearingChina factory Angular Contact Ball Bearing Hybrid Ceramic Bearing Used for Spindle   wheel bearing
editor by CX 2024-05-14

China best Active-Power Industries Thrust Angular Contact Ball Bearings 234432 China Manufacturers 3310-2RS/Zz 7010 Angular Contact Spindle Ball Bearing deep groove ball bearing

Product Description

ACTIVE-POWER INDUSTRIES Thrust Angular Contact Ball Bearings 234432 China Manufacturers 3310-2RS/ZZ 7571 Angular Contact Spindle Ball Bearing

Product Description

The connection line between the steel ball of the contact ball bearing and the contact point of the inner and outer rings forms an angle with the radial direction. Contact angles are generally divided into 15°, 30°, and 40°, which are represented by letters C, A, and B respectively.

Angular contact ball bearings mainly bear large unidirectional axial loads, and the larger the contact angle, the greater the load-bearing capacity. The material of the cage is steel plate, brass, or engineering plastic, and the forming method is stamping or turning, which is selected according to the bearing form or service conditions. Others include combined angular contact ball bearings, double-row angular contact ball bearings, and four-point contact ball bearings.

Angular contact ball bearings can bear radial load and axial load at the same time. Can work at higher speeds. The larger the contact angle, the higher the axial load-carrying capacity. High-precision and high-speed bearings usually take a contact angle of 15 degrees. Under the action of axial force, the contact angle will increase. Single-row angular contact ball bearings can only bear axial load in 1 direction and will cause additional axial force when bearing radial load. And it can only limit the axial displacement of the shaft or housing in 1 direction. If it is installed in pairs, make the outer rings of a pair of bearings face each other, that is, the wide end faces the wide end face, and the narrow end faces the narrow end face. This avoids causing additional axial forces and limits the shaft or housing to axial play in both directions.

Because the raceway of the inner and outer rings of the angular contact ball bearing can have relative displacement on the horizontal axis, it can bear radial load and axial load at the same time – combined load (single row angular contact ball bearing can only bear axial load in 1 direction, Therefore, they are generally installed in pairs). The material of the cage includes brass, synthetic resin, etc., which are distinguished according to the bearing type and service conditions.

Product Parameters

Product Name Angular Contact Ball Bearing
Type Angular Contact Ball Bearing
Structure Angular Contact
Applicable Industries The machinery manufacturing plant, machine tools, mechanical equipment, motor automobile hub, agricultural machinery
Brand Name RPZ /LONK/XWFD/ XWFD ZMW
Accuracy class P0, P6, P5, P4, P2 or as required20mm-500mm
Seal type Open / 2RS
Size 20mm-500mm
Number of Rows Single row
Origin ZheJiang , China
Product Model 7000cac 7200c 7001acm
Material Gcr15 chrome steel / stainless steel bearing
Features long life, low friction, high speed
Retainer Type Brass / bakelite / steel

Angular Contact Bearing
7000AC 7200AC 7303AC 7406AC 3304-2RS/ZZ
7001AC 7201AC 7304AC 7407ACP6 3305-2RS/ZZ
7002AC 7202AC 7305AC 7408AC 3306-2RS/ZZ
7003AC 7203AC 7306AC 7409AC 3307-2RS/ZZ
7004AC 7204AC 7307AC 7410AC 3308-2RS/ZZ
7005AC 7205AC 7308AC 7412ACM 3309-2RS/ZZ
7006AC 7206AC 7309AC 7412BM 3310-2RS/ZZ
7007AC 7207AC 7310AC 7414ACM 3311-2RS/ZZ
7008AC 7208AC 7311AC 7414BM 3312-2RS/ZZ
7009AC 7209AC 7312AC 7416ACM 3313-2RS/ZZ
7571AC 7210C 7313AC 7416BM 3314-2RS/ZZ
7011AC 7210AC 7314AC 7418ACM 3315-2RS/ZZ
7012AC 7211AC 7315AC 7418BM 3316-2RS/ZZ
7013AC 7212AC 7315BM   3317-2RS/ZZ
7014AC 7213AC 7317AC 3204-2RS/ZZ 3318-2RS/ZZ
7015AC 7214AC 7317BM 3205-2RS/ZZ 3319-2RS/ZZ
7016AC 7216AC 7318AC 3206-2RS/ZZ 3320-2RS/ZZ
7017AC 7217AC 7318BTN 3207-2RS/ZZ  
7018AC 7218AC 7319AC 3208-2RS/ZZ QJ210
7571AC 7219AC 7319BM 3209-2RS/ZZ QJ211
7571AC 7220AC 7320AC 3210-2RS/ZZ QJ212
7571AC 7221AC 7320BM 3211-2RS/ZZ QJ213
7026AC 7222AC 7322AC 3212-2RS/ZZ QJ214
7571AC 7224AC 7322BM 3213-2RS/ZZ QJ215
7030AC 7228AC 7324ACM 3214-2RS/ZZ QJ216
7032AC 7232AC 7324BM 3215-2RS/ZZ QJ217
7034AC 7236AC 7326ACM 3216-2RS/ZZ QJ218
7036AC 7240AC 7328ACM 3217-2RS/ZZ QJ219
7038AC 7244AC 7328BM 3218-2RS/ZZ QJ220
    7330ACM 3219-2RS/ZZ QJ222
    7332ACM 3220-2RS/ZZ QJ224
    7334ACM   QJ226
    7336ACM   QJ228
    7338ACM   QJ230
    7340ACM   QJ232

Company Profile

HangZhou Active-Power Industrial. is located in HangZhou, ZheJiang , China. The factory has been committed to the production research and development of bearings for more than 20 years. We support OEM and ODM bearing customization.

The main products are: Deep Groove Ball Bearing Taper Roller Bearing Tapered Roller Bearing Auto Wheel Hub Bearing Cylindrical Roller Bearing Spherical Roller Bearing Motor Bearing Needle Roller Bearing Angular Contact Ball Bearing.

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at the first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Double
Load Direction: Thrust Bearing
Material: Stainless Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

China best Active-Power Industries Thrust Angular Contact Ball Bearings 234432 China Manufacturers 3310-2RS/Zz 7010 Angular Contact Spindle Ball Bearing   deep groove ball bearingChina best Active-Power Industries Thrust Angular Contact Ball Bearings 234432 China Manufacturers 3310-2RS/Zz 7010 Angular Contact Spindle Ball Bearing   deep groove ball bearing
editor by CX 2024-05-06

China Professional Xcb7003-E-T-P4s-UL Spindle Bearing Angular Contact Ball Bearing with Hot selling

Product Description

Spindle Bearing
XCB7003-E-T-P4S-UL

Detailed Photos

Bearing No. XCB7003-E-T-P4S-UL
d 17 mm
D 35 mm
B 10 mm
Weight 0.03 kg

 

Packaging & Shipping

After Sales Service

 

FAQ

Why our bearing is better than other?
Material
We usually use bearing steel (GCr15), but many manufacturers only use softer carbon steel materials, so our bearings have higher hardness and longer service life.

Heat treatment
We have our own heat treatment plant and do not need to be outsourced. We use a slower speed and more stable temperature to effectively control the steel and increase the toughness and life of the steel.
Other small-scale bearing companies usually need to outsource. Many outsourcing factories only strengthen the hardness of the bearing surface due to cost factors, but the hardness inside is not enough, which is the reason why many bad bearings are easy to crack.

Precision
Our bearings can be controlled at a height accuracy of 0~-0.004mm, fast speed and smoothness.

Multiple grinding process
We grind the bearing many times, but others may grind it only once, so the chamfer of our bearing is very smooth.

In conclusion
We use high-quality materials and multiple grinding processes, so our bearings have the characteristics of high speed, low noise,high precision and long life.

Quality guarantee
we give our customers 1 year quality warrantee for the bearings.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

China Professional Xcb7003-E-T-P4s-UL Spindle Bearing Angular Contact Ball Bearing   with Hot sellingChina Professional Xcb7003-E-T-P4s-UL Spindle Bearing Angular Contact Ball Bearing   with Hot selling
editor by CX 2024-04-29

China Hot selling Spindle Bearing B 71932-C-T-P4s-UL Angular Contact Ball Bearing bearing driver kit

Product Description

This type of bearing is used to bear heavier radial-axial combined loads with limit rotational speeds higher. The bearings are mainly applied to the construction parts that limit axial displacement of the axis or housing in double directions.
The bearing is used with 4 row cylindrical roller bearings limiting the axial motion of roll in rolling mill the axial load capactiy is heavier than four-point contact ball ebearings incomparison with paiy mounted in back-to-back, face-to-face arvangements single row angular contact ball bearings units, the axial clearance of the bearing doesn’t need adjustment, these bearings can be mounted with ease and there can be 2 types: 2 half-outer-rings and 2 half-inner-rings according to the installation need of customers.
 

718 Series Angular Contact Bearings
719 Series Angular Contact Bearings
H719 Series Angular Contact Bearings
70 Series Angular Contact Bearings
H70 Series Angular Contact Bearings
B70 Series Angular Contact Bearings
72 Series Angular Contact Bearings

Company

HangZhou Auto Bearing Co., Ltd. is located in the industrial park of HangZhou,which is 1 of the 4 great ancient capitals of China.Our company is the member of China Bearing Industry Association,cooperating with State Quality Supervision and Testing Center for bearing.Our company is a professional bearing manufacturer which integrated with research ,development and marketing services.

Our major products include deep groove ball bearing, spherical roller bearing, slewing ring, crossed roller bearing and other all kinds of high precision bearings.Our products are widely applied to motor industry,mining metallurgy,wind power generation,petroleum drilling,automobile and motorcycle etc..
Our company not only possesses advanced bearing manufacturing equipments and international first-class measuring instruments, but also has strong strength of manufacturing, inspecting and testing the high precision and reliability bearings.Each process is in strict accordance with the ISO9001 quality management system,which effectively guarantees the precise of products and stability of the performance. AUTO bearings are mainly exported to the United states,South Korea,Europe,etc., which have reached the high level of foreign similar products.
The soul of our business culture is [Detail makes competitive, innovation makes first-class”.We believe the production and management philosophy of [quality wins ,casting competitive products”.The company adheres to the zero-defect quality management for meeting customer requirements.

Packing

A. plastic box & outer carton & pallets
B. plastic bag & box & carton & pallet
C. tube package & middle box & carton & pallet
D. Depends on your needs

Delivery

A. Most orders will be shipped within 3-5 days of payment being received.
B. Samples will be shipped by cov2urier as FedEx,UPS,DHL,etc.

Thank you very much for taking time to view our company’s website. If you are interested in this product, please feel free to contact us. We are always here.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Other
Aligning: Non-Aligning Bearing
Separated: Unseparated
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rolling contact bearing

What are the potential challenges or limitations associated with using rolling contact bearings in various industries?

Rolling contact bearings offer numerous benefits and are widely used in various industries. However, there are certain challenges and limitations associated with their use. It is important to understand these potential issues to ensure proper application and mitigate any adverse effects. Here’s a detailed explanation of the challenges and limitations associated with using rolling contact bearings:

  • Load Capacity:

While rolling contact bearings are designed to handle substantial loads, there are limitations to their load capacity. Exceeding the specified load limits can lead to premature wear, increased friction, and potentially catastrophic failure. It is crucial to consider the expected loads in the application and select bearings with appropriate load ratings and configurations. In some high-load applications, alternative bearing types, such as spherical roller bearings or tapered roller bearings, may be more suitable to handle the specific load requirements.

  • Speed Limitations:

Rolling contact bearings have speed limitations that need to be considered in high-speed applications. At high rotational speeds, centrifugal forces can affect the performance and reliability of rolling contact bearings. The limitation is primarily due to factors such as the bearing’s internal clearance, cage design, lubrication, and the potential for increased heat generation. To overcome speed limitations, specialized high-speed bearings with improved designs and materials, such as ceramic balls or hybrid bearings, may be used in certain applications.

  • Maintenance and Lubrication:

Proper maintenance and lubrication are essential for the reliable operation of rolling contact bearings. Inadequate lubrication or improper maintenance practices can result in increased friction, heat buildup, and premature wear. It is important to follow the manufacturer’s recommendations for lubrication intervals, lubricant selection, and application methods. In some applications, such as high-temperature environments or extreme operating conditions, special considerations may be required to ensure effective lubrication and prevent bearing failure.

  • Environmental Factors:

Rolling contact bearings can be sensitive to certain environmental factors. Exposure to contaminants, such as dirt, dust, moisture, or aggressive chemicals, can lead to accelerated wear and corrosion. In industries where the operating environment is harsh or contaminated, additional protective measures, such as sealing arrangements or the use of specialized coatings, may be necessary to enhance the bearing’s resistance to environmental factors. It is important to evaluate the specific environmental conditions and select bearings that are suitable for the intended application.

  • Installation and Alignment:

Improper installation or misalignment of rolling contact bearings can result in reduced performance and premature failure. Achieving accurate alignment and proper fitment during installation is crucial. Misalignment can lead to increased friction, uneven load distribution, and potential damage to the bearing surfaces. It is necessary to follow the manufacturer’s installation guidelines, use appropriate tools, and employ precision alignment techniques to ensure optimal performance and longevity of the bearings.

  • Size and Space Constraints:

In some applications, size and space constraints may limit the use of rolling contact bearings. The available space for bearing installation may be limited, requiring the use of compact or specialized bearing designs. Additionally, certain applications may demand high load-carrying capacity within a restricted envelope, necessitating careful bearing selection and possibly the use of alternative bearing types. It is important to consider the space limitations and select bearings that can accommodate the specified requirements while fitting within the available space.

While rolling contact bearings offer numerous advantages, it is essential to be aware of the potential challenges and limitations associated with their use. By understanding these factors and taking appropriate measures, such as careful selection, proper maintenance, and adherence to installation guidelines, the performance and reliability of rolling contact bearings can be optimized in various industries and applications.

rolling contact bearing

Can you describe the various types of seals and shields used with rolling contact bearings for contamination prevention?

Various types of seals and shields are used with rolling contact bearings to prevent contamination and protect the bearing internals. Here’s a detailed description of the commonly used seals and shields:

  • Contact Seals:

Contact seals, also known as lip seals or radial seals, are designed to provide a barrier against contaminants while maintaining lubricant retention within the bearing. These seals consist of a flexible lip that makes contact with the inner or outer ring of the bearing. The lip is typically made of synthetic rubber or elastomeric material. Contact seals effectively prevent the entry of solid particles, liquids, and other contaminants into the bearing. They are suitable for applications with moderate operating speeds and rotational requirements where the sealing function takes priority over low friction.

  • Non-Contact Seals:

Non-contact seals, also known as labyrinth seals or gap seals, create a labyrinthine path that hinders the entry of contaminants into the bearing. These seals do not make physical contact with the bearing rings, resulting in lower friction and reduced heat generation compared to contact seals. Non-contact seals are typically constructed using metallic or non-metallic components with precise geometries to create a tortuous path for contaminants. They are suitable for high-speed applications and environments where low friction and minimal heat generation are important considerations.

  • Shields:

Shields, also referred to as metal shields or non-contact shields, provide a physical barrier between the rolling elements and the external environment. Shields are typically made of metal, such as steel, and are attached to the outer ring of the bearing. They cover a portion of the bearing’s circumference, leaving a small gap for the rolling elements to function. Shields offer effective protection against larger particles and prevent the direct contact of contaminants with the rolling elements. However, they do not provide a complete seal, allowing for limited air circulation and lubricant flow within the bearing.

  • Hybrid Seals:

Hybrid seals combine the advantages of contact seals and non-contact seals. These seals use a combination of contacting and non-contacting elements to provide enhanced protection against contamination. Hybrid seals are designed to reduce friction and heat generation while offering improved sealing performance compared to contact seals. They typically incorporate a non-contacting labyrinth or gap seal with additional contact elements, such as lip seals or brush seals, to provide a more effective barrier against contaminants.

  • Ingress Protection (IP) Ratings:

In addition to the specific seal and shield types, rolling contact bearings may also be assigned Ingress Protection (IP) ratings. IP ratings indicate the level of protection provided against solid particles, such as dust and dirt, as well as liquids, such as water and oil. The IP rating is typically represented by a two-digit number, where the first digit represents the level of protection against solid particles, and the second digit represents the level of protection against liquids. Higher IP ratings indicate greater protection against contaminants.

The selection of the appropriate seal or shield type depends on various factors, including the application requirements, operating conditions, contamination risks, and desired friction characteristics. Manufacturers typically provide information on the recommended sealing options for their bearing products, considering the specific application needs and environmental conditions.

rolling contact bearing

What are the common types of rolling contact bearings, such as ball bearings or roller bearings?

Rolling contact bearings are available in various types, each designed to accommodate specific load capacities, speeds, and application requirements. The most common types of rolling contact bearings include ball bearings and roller bearings. Here’s a detailed explanation of these common types:

  • Ball Bearings:

Ball bearings are the most widely used type of rolling contact bearings. They consist of one or more rows of balls placed between two rings—an inner ring and an outer ring. The balls roll along the raceways formed on the rings, enabling smooth and low-friction rotation. Ball bearings are known for their high rotational speeds, low starting torque, and relatively low load capacity compared to roller bearings.

There are several variations within the category of ball bearings, including:

  • Deep Groove Ball Bearings: These ball bearings have deep raceway grooves, allowing them to accommodate both radial and axial loads. They are commonly used in applications such as electric motors, appliances, and automotive components.
  • Angular Contact Ball Bearings: Angular contact ball bearings can handle both radial and axial loads. They have an angled contact surface between the balls and the raceways, enabling them to support higher axial loads and facilitate combined radial and axial movements. These bearings are often used in machine tools, pumps, and gearboxes.
  • Thrust Ball Bearings: Thrust ball bearings are designed to support axial loads in a single direction. They consist of two rings with a set of balls sandwiched between them. Thrust ball bearings are commonly used in applications such as automotive transmissions and steering systems.
  • Roller Bearings:

Roller bearings, as the name implies, utilize cylindrical or tapered rollers instead of balls to facilitate motion. Roller bearings are capable of handling higher loads and are often used in heavy-duty applications. The common types of roller bearings include:

  • Cylindrical Roller Bearings: Cylindrical roller bearings feature cylindrical rollers that provide a large contact area with the raceways. They can accommodate high radial loads and moderate axial loads. Cylindrical roller bearings are commonly used in applications such as machine tool spindles, electric motors, and gearboxes.
  • Tapered Roller Bearings: Tapered roller bearings consist of tapered rollers and inner and outer rings with tapered raceways. They can support both radial and axial loads in a single direction. Tapered roller bearings are commonly used in automotive wheel bearings, heavy machinery, and construction equipment.
  • Spherical Roller Bearings: Spherical roller bearings have barrel-shaped rollers and two raceways on the inner and outer rings that are inclined relative to the bearing axis. This design allows them to accommodate misalignment and axial displacement. Spherical roller bearings are commonly used in applications with heavy loads, such as mining equipment, paper mills, and crushers.
  • Needle Roller Bearings: Needle roller bearings use long, thin rollers that have a high length-to-diameter ratio. They are suitable for applications with limited radial space and high load capacity. Needle roller bearings are commonly used in automotive transmissions, industrial gearboxes, and motorcycle engines.

These are some of the common types of rolling contact bearings, including ball bearings and roller bearings. Each type has its own advantages and is suitable for specific applications based on factors such as load requirements, speed, and space limitations.

China Hot selling Spindle Bearing B 71932-C-T-P4s-UL Angular Contact Ball Bearing   bearing driver kitChina Hot selling Spindle Bearing B 71932-C-T-P4s-UL Angular Contact Ball Bearing   bearing driver kit
editor by CX 2024-04-25

China Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c connecting rod bearing

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

How do innovations and advancements in rolling contact bearing technology impact their use?

Innovations and advancements in rolling contact bearing technology have a significant impact on their use in various industries. These advancements drive improvements in performance, reliability, efficiency, and versatility of rolling contact bearings. Here’s a detailed explanation of how innovations and advancements in rolling contact bearing technology impact their use:

  • Enhanced Performance:

Innovations in rolling contact bearing technology lead to enhanced performance characteristics. Advancements in bearing design, materials, and manufacturing processes result in bearings with improved load-carrying capacity, higher speed capabilities, and increased resistance to wear and fatigue. These enhancements enable rolling contact bearings to withstand higher loads, operate at higher speeds, and provide superior performance in demanding applications. For industries that rely on bearings to support heavy loads or operate in challenging conditions, these advancements translate into improved equipment performance and reliability.

  • Extended Service Life:

Advancements in rolling contact bearing technology contribute to extended service life. Innovations in bearing materials, surface treatments, and lubrication techniques help reduce friction, wear, and the risk of premature failure. Newer bearing designs and manufacturing processes ensure better distribution of loads and improved stress distribution, resulting in longer bearing life. The ability of rolling contact bearings to operate reliably for extended periods reduces maintenance requirements, downtime, and overall operating costs for industries that heavily rely on bearings.

  • Increased Efficiency:

Advancements in rolling contact bearing technology lead to increased efficiency in various applications. Reduced frictional losses, improved sealing arrangements, and optimized lubrication systems contribute to lower energy consumption and higher overall system efficiency. Bearings with lower friction characteristics result in less power loss, allowing equipment to operate with higher energy efficiency. This is particularly important in industries where energy efficiency is a key consideration, such as automotive, aerospace, and wind energy.

  • Expanded Application Range:

Innovations in rolling contact bearing technology enable their use in a broader range of applications. Advancements in bearing materials, coatings, and sealing arrangements enhance their resistance to extreme temperatures, corrosive environments, or other challenging operating conditions. This expands the application possibilities for rolling contact bearings in industries such as oil and gas, mining, chemical processing, and food and beverage. Additionally, advancements in bearing design allow for more compact and lightweight solutions, opening up opportunities for their use in space-constrained applications.

  • Integration with Digital Technologies:

The integration of rolling contact bearings with digital technologies is another significant impact of advancements in bearing technology. Sensors and monitoring systems can be incorporated into bearings to collect real-time data on operating conditions, such as temperature, vibration, and load. This data can be used for predictive maintenance, condition monitoring, and optimizing equipment performance. The integration of bearings with digital technologies enables industries to implement proactive maintenance strategies, reduce unplanned downtime, and improve overall equipment reliability.

Overall, innovations and advancements in rolling contact bearing technology have a profound impact on their use in various industries. These advancements result in enhanced performance, extended service life, increased efficiency, expanded application range, and integration with digital technologies. As a result, industries can benefit from improved equipment reliability, reduced maintenance costs, increased productivity, and optimized operational performance.

rolling contact bearing

How do rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment?

Rolling contact bearings play a crucial role in enhancing the overall efficiency and functionality of machinery and equipment. Here’s a detailed explanation of how rolling contact bearings contribute to improved efficiency and functionality:

  • Reduced Friction:

Rolling contact bearings are designed to minimize friction between moving parts. They consist of rolling elements, such as balls or rollers, that reduce the contact surface area and enable rolling motion. This rolling action results in lower friction compared to sliding contact, allowing machinery to operate with reduced energy consumption. By reducing frictional losses, rolling contact bearings help optimize the efficiency of machinery and equipment.

  • Load Distribution:

Rolling contact bearings distribute loads evenly across their rolling elements. This load distribution capability ensures that the forces acting on the machinery are spread out and shared by multiple bearing points. By distributing the load, rolling contact bearings help prevent excessive stress on individual components and minimize the risk of premature failure. This improves the overall functionality and reliability of machinery, allowing it to operate under heavy loads without compromising performance.

  • High-Speed Capability:

Rolling contact bearings are designed to operate at high speeds. The rolling elements and raceways are precisely engineered to minimize the centrifugal forces and minimize frictional heat generation. This allows machinery and equipment to achieve higher rotational speeds without compromising performance or reliability. The high-speed capability of rolling contact bearings is particularly advantageous in applications such as automotive engines, turbines, machine tools, and high-speed manufacturing processes.

  • Reduced Vibration and Noise:

Rolling contact bearings help reduce vibration and noise in machinery and equipment. The rolling action of the bearing elements minimizes friction-induced vibrations, resulting in smoother operation. Additionally, well-designed and properly lubricated rolling contact bearings dampen vibrations caused by external forces or imbalances in rotating parts. By reducing vibration and noise levels, rolling contact bearings contribute to a quieter and more comfortable working environment, as well as improved accuracy and precision in equipment that requires high levels of stability.

  • Versatility and Flexibility:

Rolling contact bearings offer versatility and flexibility in machinery design. They come in various types and configurations, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, and tapered roller bearings, each suited for specific applications and load conditions. The availability of different bearing sizes and designs allows engineers and designers to select the most appropriate bearing for their specific machinery requirements. This versatility and flexibility enable the optimization of machinery performance and functionality.

  • Compact Design:

Rolling contact bearings enable compact and space-saving machinery designs. Their ability to handle high loads while occupying minimal space allows for the creation of more compact equipment. This is particularly beneficial in applications where space is limited, such as automotive, aerospace, and portable devices. The compact design made possible by rolling contact bearings enhances the overall functionality and efficiency of machinery by maximizing the use of available space.

In summary, rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment through reduced friction, load distribution, high-speed capability, vibration and noise reduction, versatility and flexibility in design, and compactness. By optimizing the performance of rotating components, rolling contact bearings contribute to improved energy efficiency, reliability, precision, and longevity of machinery and equipment in various industries.

rolling contact bearing

How do rolling contact bearings contribute to reduced friction and improved efficiency in machinery?

Rolling contact bearings play a crucial role in reducing friction and improving the efficiency of machinery. They achieve this through several design features and operating characteristics. Here’s a detailed explanation of how rolling contact bearings contribute to reduced friction and improved efficiency:

  • Rolling Motion:

Unlike sliding contact bearings, which rely on sliding friction between surfaces, rolling contact bearings utilize rolling motion between the rolling elements (balls or rollers) and the raceways. This rolling motion significantly reduces friction compared to sliding friction, resulting in lower energy losses and improved efficiency. The rolling contact between the elements and the raceways minimizes surface contact and allows smooth rotation with reduced frictional resistance.

  • Lubrication:

Rolling contact bearings are typically lubricated with oils or greases to further reduce friction and wear. Lubricants form a thin film between the rolling elements and the raceways, providing a protective layer that separates the surfaces and minimizes direct metal-to-metal contact. This lubricating film reduces friction and dissipates heat generated during operation, contributing to smoother rotation and improved efficiency.

  • Reduced Sliding Friction:

As mentioned earlier, rolling contact bearings rely on rolling motion rather than sliding friction. This design characteristic reduces the occurrence of sliding friction between the bearing components, resulting in lower frictional forces and decreased energy losses. The reduced sliding friction contributes to improved efficiency and can translate into energy savings in various machinery applications.

  • Load Distribution:

Rolling contact bearings distribute loads more evenly compared to sliding contact bearings. The rolling elements in a bearing share the load and distribute it over a larger contact area, reducing localized stress and minimizing friction. This load distribution characteristic helps prevent excessive wear and prolongs the service life of the bearing. By maintaining efficient load distribution, rolling contact bearings contribute to improved efficiency and reliability in machinery.

  • High-Speed Capability:

Rolling contact bearings are well-suited for high-speed applications due to their low friction characteristics. The rolling motion and reduced sliding friction allow these bearings to rotate at higher speeds with minimal heat generation. This high-speed capability is essential for various machinery, such as electric motors, machine tools, and automotive components, where efficient power transmission and rotational precision are critical for optimal performance and efficiency.

In summary, rolling contact bearings contribute to reduced friction and improved efficiency in machinery through their rolling motion, effective lubrication, reduced sliding friction, even load distribution, and high-speed capability. These design features and operating characteristics minimize energy losses, reduce wear, and enhance the overall performance and reliability of machinery in a wide range of industries.

China Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c   connecting rod bearingChina Good quality High Precision 7007 P4 7007 P5 Bearing 7007c 2rz CNC Spindle Angular Contact Ball Bearing 7007 7007c   connecting rod bearing
editor by CX 2024-04-23

China Best Sales Machine Tool Spindle Mating Bearing Manufacturers 7032AC/7228AC/7004AC 7002 Angular Contact Ball Bearing supplier

Product Description

Machine Tool Spindle Mating Bearing Manufacturers 7032AC/7228AC/7004AC 7002 Angular Contact Ball Bearing

Product Description

The connection line between the steel ball of the contact ball bearing and the contact point of the inner and outer rings forms an angle with the radial direction. Contact angles are generally divided into 15°, 30°, and 40°, which are represented by letters C, A, and B respectively.

Angular contact ball bearings mainly bear large unidirectional axial loads, and the larger the contact angle, the greater the load-bearing capacity. The material of the cage is steel plate, brass, or engineering plastic, and the forming method is stamping or turning, which is selected according to the bearing form or service conditions. Others include combined angular contact ball bearings, double-row angular contact ball bearings, and four-point contact ball bearings.

Angular contact ball bearings can bear radial load and axial load at the same time. Can work at higher speeds. The larger the contact angle, the higher the axial load-carrying capacity. High-precision and high-speed bearings usually take a contact angle of 15 degrees. Under the action of axial force, the contact angle will increase. Single-row angular contact ball bearings can only bear axial load in 1 direction and will cause additional axial force when bearing radial load. And it can only limit the axial displacement of the shaft or housing in 1 direction. If it is installed in pairs, make the outer rings of a pair of bearings face each other, that is, the wide end faces the wide end face, and the narrow end faces the narrow end face. This avoids causing additional axial forces and limits the shaft or housing to axial play in both directions.

Because the raceway of the inner and outer rings of the angular contact ball bearing can have relative displacement on the horizontal axis, it can bear radial load and axial load at the same time – combined load (single row angular contact ball bearing can only bear axial load in 1 direction, Therefore, they are generally installed in pairs). The material of the cage includes brass, synthetic resin, etc., which are distinguished according to the bearing type and service conditions.

Product Parameters

Product Name 

Angular Contact Ball Bearing

Type

Angular Contact Ball Bearing

Structure

Angular Contact

Applicable Industries

The machinery manufacturing plant, machine tools, mechanical equipment, motor automobile hub, agricultural machinery

Brand Name

RPZ /LONK/XWFD/ XWFD ZMW

Accuracy class

P0, P6, P5, P4, P2 or as required20mm-500mm

Seal type

Open / 2RS

Size

20mm-500mm

Number of Rows

Single row

Origin

ZheJiang , China

Product Model

7000cac 7200c 7001acm

Material

Gcr15 chrome steel / stainless steel bearing

Features

long life, low friction, high speed

Retainer Type

Brass / bakelite / steel

 

Angular Contact Bearing

7000AC

7200AC

7303AC

7406AC

3304-2RS/ZZ

7001AC

7201AC

7304AC

7407ACP6

3305-2RS/ZZ

7002AC

7202AC

7305AC

7408AC

3306-2RS/ZZ

7003AC

7203AC

7306AC

7409AC

3307-2RS/ZZ

7004AC

7204AC

7307AC

7410AC

3308-2RS/ZZ

7005AC

7205AC

7308AC

7412ACM

3309-2RS/ZZ

7006AC

7206AC

7309AC

7412BM

3310-2RS/ZZ

7007AC

7207AC

7310AC

7414ACM

3311-2RS/ZZ

7008AC

7208AC

7311AC

7414BM

3312-2RS/ZZ

7009AC

7209AC

7312AC

7416ACM

3313-2RS/ZZ

7571AC

7210C

7313AC

7416BM

3314-2RS/ZZ

7011AC

7210AC

7314AC

7418ACM

3315-2RS/ZZ

7012AC

7211AC

7315AC

7418BM

3316-2RS/ZZ

7013AC

7212AC

7315BM

 

3317-2RS/ZZ

7014AC

7213AC

7317AC

3204-2RS/ZZ

3318-2RS/ZZ

7015AC

7214AC

7317BM

3205-2RS/ZZ

3319-2RS/ZZ

7016AC

7216AC

7318AC

3206-2RS/ZZ

3320-2RS/ZZ

7017AC

7217AC

7318BTN

3207-2RS/ZZ

 

7018AC

7218AC

7319AC

3208-2RS/ZZ

QJ210

7571AC

7219AC

7319BM

3209-2RS/ZZ

QJ211

7571AC

7220AC

7320AC

3210-2RS/ZZ

QJ212

7571AC

7221AC

7320BM

3211-2RS/ZZ

QJ213

7026AC

7222AC

7322AC

3212-2RS/ZZ

QJ214

7571AC

7224AC

7322BM

3213-2RS/ZZ

QJ215

7030AC

7228AC

7324ACM

3214-2RS/ZZ

QJ216

7032AC

7232AC

7324BM

3215-2RS/ZZ

QJ217

7034AC

7236AC

7326ACM

3216-2RS/ZZ

QJ218

7036AC

7240AC

7328ACM

3217-2RS/ZZ

QJ219

7038AC

7244AC

7328BM

3218-2RS/ZZ

QJ220

 

 

7330ACM

3219-2RS/ZZ

QJ222

 

 

7332ACM

3220-2RS/ZZ

QJ224

 

 

7334ACM

 

QJ226

 

 

7336ACM

 

QJ228

 

 

7338ACM

 

QJ230

 

 

7340ACM

 

QJ232

 

 

Detailed Photos

 

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at the first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Separated
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

China Best Sales Machine Tool Spindle Mating Bearing Manufacturers 7032AC/7228AC/7004AC 7002 Angular Contact Ball Bearing   supplierChina Best Sales Machine Tool Spindle Mating Bearing Manufacturers 7032AC/7228AC/7004AC 7002 Angular Contact Ball Bearing   supplier
editor by CX 2024-04-15

China Custom B7214-C-T-P4s Spindle Bearing Angular Contact Ball Bearing 12*32*10mm with Good quality

Product Description

Angular Contact Ball Bearing
B7214-C-T-P4S

Product Feature & Application

Key attributes

Industry-specific attributes

Precision Rating

P0,P6, P5, or as requested

 

Number of Row

Single row

 

Other attributes

Applicable Industries

Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Advertising Company

 

Place of Origin

ZheJiang , China

 

Type

BALL

 

Structure

Angular Contact

 

Brand Name

CZPT /OEM

 

Seals Type

open/seal

 

Payment

T/T Western Union

 

Delivery

By Sea, Air or Express

 

Sample order

Accept

 

Material

Chrome steel

 

Packaging Details

standard export package

 

Supply Ability

10000 Set/Sets per Month

 

Vibration

ZV1, ZV2, ZV3, or as requested

 

Feature

Long Life

 

Type

Angular Contact Ball Bearing

 

Packaging and delivery

Packaging Details

standard export package for the long and rough shipment distance or as requested

 

Port

HangZhou;ZheJiang ;HangZhou

 

Package Type:

standard export package for the long and rough shipment distance or as requested

 

attribute-list

Supply Ability

10000 Set/Sets per Month

 

Lead time

Quantity (sets) 1 – 10                 > 10
Lead time (days) 7-10 To be negotiated

 

Detailed Photos

Packaging & Shipping

After Sales Service

FAQ

Why our bearing is better than other?
Material
We usually use bearing steel (GCr15), but many manufacturers only use softer carbon steel materials, so our bearings have higher hardness and longer service life.

Heat treatment
We have our own heat treatment plant and do not need to be outsourced. We use a slower speed and more stable temperature to effectively control the steel and increase the toughness and life of the steel.
Other small-scale bearing companies usually need to outsource. Many outsourcing factories only strengthen the hardness of the bearing surface due to cost factors, but the hardness inside is not enough, which is the reason why many bad bearings are easy to crack.

Precision
Our bearings can be controlled at a height accuracy of 0~-0.004mm, fast speed and smoothness.

Multiple grinding process
We grind the bearing many times, but others may grind it only once, so the chamfer of our bearing is very smooth.

In conclusion
We use high-quality materials and multiple grinding processes, so our bearings have the characteristics of high speed, low noise,high precision and long life.

Quality guarantee
we give our customers 1 year quality warrantee for the bearings
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Quality Level: P0, P2, P4, P5, P6
Sample: Available
Row Number: Multi-Column
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China Custom B7214-C-T-P4s Spindle Bearing Angular Contact Ball Bearing 12*32*10mm   with Good qualityChina Custom B7214-C-T-P4s Spindle Bearing Angular Contact Ball Bearing 12*32*10mm   with Good quality
editor by CX 2024-04-12

China Professional Spindle Bearing 7206 Ctrsulp4 Angular Contact Ball Bearing with Great quality

Product Description

This type of bearing is used to bear heavier radial-axial combined loads with limit rotational speeds higher. The bearings are mainly applied to the construction parts that limit axial displacement of the axis or housing in double directions.
The bearing is used with 4 row cylindrical roller bearings limiting the axial motion of roll in rolling mill the axial load capactiy is heavier than four-point contact ball ebearings incomparison with paiy mounted in back-to-back, face-to-face arvangements single row angular contact ball bearings units, the axial clearance of the bearing doesn’t need adjustment, these bearings can be mounted with ease and there can be 2 types: 2 half-outer-rings and 2 half-inner-rings according to the installation need of customers.
 

718 Series Angular Contact Bearings
719 Series Angular Contact Bearings
H719 Series Angular Contact Bearings
70 Series Angular Contact Bearings
H70 Series Angular Contact Bearings
B70 Series Angular Contact Bearings
72 Series Angular Contact Bearings

Company

HangZhou Auto Bearing Co., Ltd. is located in the industrial park of HangZhou,which is 1 of the 4 great ancient capitals of China.Our company is the member of China Bearing Industry Association,cooperating with State Quality Supervision and Testing Center for bearing.Our company is a professional bearing manufacturer which integrated with research ,development and marketing services.

Our major products include deep groove ball bearing, spherical roller bearing, slewing ring, crossed roller bearing and other all kinds of high precision bearings.Our products are widely applied to motor industry,mining metallurgy,wind power generation,petroleum drilling,automobile and motorcycle etc..
Our company not only possesses advanced bearing manufacturing equipments and international first-class measuring instruments, but also has strong strength of manufacturing, inspecting and testing the high precision and reliability bearings.Each process is in strict accordance with the ISO9001 quality management system,which effectively guarantees the precise of products and stability of the performance. AUTO bearings are mainly exported to the United states,South Korea,Europe,etc., which have reached the high level of foreign similar products.
The soul of our business culture is [Detail makes competitive, innovation makes first-class”.We believe the production and management philosophy of [quality wins ,casting competitive products”.The company adheres to the zero-defect quality management for meeting customer requirements.

Packing

A. plastic box & outer carton & pallets
B. plastic bag & box & carton & pallet
C. tube package & middle box & carton & pallet
D. Depends on your needs

Delivery

A. Most orders will be shipped within 3-5 days of payment being received.
B. Samples will be shipped by cov2urier as FedEx,UPS,DHL,etc.

Thank you very much for taking time to view our company’s website. If you are interested in this product, please feel free to contact us. We are always here.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Other
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Axial Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

rolling contact bearing

What is the impact of proper lubrication and maintenance on the performance and lifespan of rolling contact bearings?

Proper lubrication and maintenance have a significant impact on the performance and lifespan of rolling contact bearings. Adequate lubrication ensures smooth operation, reduces friction, prevents wear, and extends the service life of the bearings. Here’s a detailed explanation of the impact of proper lubrication and maintenance on rolling contact bearings:

  • Reduced Friction and Wear:

Proper lubrication forms a thin film of lubricant between the rolling elements and the raceways of the bearing. This lubricating film reduces friction and wear by minimizing direct metal-to-metal contact. It prevents the surfaces from rubbing against each other, reducing frictional forces and minimizing wear on the bearing components. Reduced friction and wear contribute to smoother operation, improved efficiency, and increased bearing lifespan.

  • Heat Dissipation:

Lubrication in rolling contact bearings helps dissipate heat generated during operation. The lubricant absorbs and carries away heat from the bearing, preventing excessive temperature rise. Adequate heat dissipation is crucial for maintaining proper operating conditions and preventing thermal damage to the bearing components. Proper lubrication ensures efficient heat transfer, which in turn contributes to the overall performance and durability of the bearing.

  • Protection Against Corrosion and Contamination:

Lubrication acts as a protective barrier, preventing corrosion and contamination of rolling contact bearings. The lubricant creates a barrier that shields the bearing surfaces from moisture, dust, dirt, and other contaminants that can lead to corrosion and premature wear. By providing a protective layer, proper lubrication helps maintain the integrity of the bearing components and extends their lifespan.

  • Load Distribution:

Proper lubrication ensures effective load distribution within rolling contact bearings. The lubricant helps distribute the applied loads evenly across the rolling elements and the raceways, minimizing stress concentrations and preventing premature fatigue failure. By promoting even load distribution, lubrication enhances the load-carrying capacity and longevity of the bearing.

  • Prevention of Excessive Clearance:

Over time, rolling contact bearings may experience wear, which can result in increased clearance between the rolling elements and the raceways. Proper lubrication helps reduce this clearance by filling the gaps and providing a cushioning effect. By minimizing excessive clearance, lubrication maintains the proper functioning and performance of the bearing, preventing issues such as vibration, noise, and reduced load-carrying capacity.

  • Maintenance and Inspection:

Regular maintenance and inspection are essential for optimizing the performance and lifespan of rolling contact bearings. Maintenance activities may include lubricant replenishment, cleaning, and periodic replacement of worn-out bearings. Regular inspections allow for the early detection of any signs of damage, excessive wear, or inadequate lubrication. Timely maintenance and inspections help identify and address potential issues before they escalate, ensuring the continued reliability and longevity of the bearings.

In conclusion, proper lubrication and maintenance significantly impact the performance and lifespan of rolling contact bearings. Adequate lubrication reduces friction, prevents wear, dissipates heat, and protects against corrosion and contamination. It promotes even load distribution and helps maintain the proper functioning of the bearing. Regular maintenance and inspections further ensure optimal performance and allow for timely intervention to address any potential issues. By following proper lubrication practices and conducting regular maintenance, the service life of rolling contact bearings can be extended, leading to improved efficiency, reduced downtime, and cost savings in various applications.

rolling contact bearing

What is the role of cage design and materials in rolling contact bearing performance and durability?

The cage design and materials used in rolling contact bearings play a crucial role in their performance and durability. Here’s a detailed explanation of the role of cage design and materials in rolling contact bearing performance and durability:

  • Function of the Cage:

The cage, also known as the bearing retainer or separator, holds and separates the rolling elements in a rolling contact bearing. Its primary function is to maintain the proper spacing and alignment of the rolling elements, allowing them to roll smoothly and distribute the load evenly. The cage prevents the rolling elements from contacting each other, reducing friction, wear, and the risk of damage. By guiding the rolling elements, the cage also helps to minimize the centrifugal forces and maintain stability at high speeds. The design and materials of the cage directly influence these functions and, consequently, the overall performance and durability of the bearing.

  • Cage Design Considerations:

The design of the cage is carefully considered to ensure optimal bearing performance and durability. Some key design considerations include:

  • Material Compatibility: The cage material must be compatible with the operating conditions and lubricants used in the bearing. It should have sufficient strength, hardness, and resistance to wear and fatigue. Different applications may require cages made from materials such as steel, brass, synthetic polymers, or composite materials.
  • Friction and Heat Generation: The cage design should minimize friction between the rolling elements and the cage itself. Reduced friction helps improve energy efficiency, reduce heat generation, and extend the bearing’s service life.
  • Load Distribution: The cage design should facilitate even load distribution among the rolling elements. This ensures that the forces acting on the bearing are evenly distributed, reducing stress concentrations and the risk of premature failure.
  • High-Speed Capability: The cage design should be optimized to handle high-speed applications. It should be lightweight, promote efficient lubricant flow, and minimize windage losses caused by air turbulence at high rotational speeds.
  • Alignment and Stability: The cage design should promote proper alignment and stability of the rolling elements, especially during rapid accelerations, decelerations, or changes in direction. This helps maintain smooth operation and prevents the rolling elements from skewing or becoming misaligned.
  • Cage Material Selection:

The choice of cage material depends on factors such as the operating conditions, load requirements, lubrication, and cost considerations. Commonly used cage materials include:

  • Steel: Steel cages offer excellent strength, durability, and resistance to high temperatures. They are commonly used in applications with heavy loads, high speeds, and high operating temperatures.
  • Brass: Brass cages provide good strength, corrosion resistance, and low friction. They are suitable for applications where low noise and vibration levels are important, such as in precision instruments and industrial machinery.
  • Synthetic Polymers: Synthetic polymer cages, such as polyamide (nylon) or polyetheretherketone (PEEK), offer advantages such as low friction, lightweight, corrosion resistance, and the ability to dampen vibrations. They are commonly used in applications where reducing friction, noise, and weight are critical, such as in automotive and aerospace industries.
  • Composite Materials: Composite cages combine different materials to achieve specific properties such as high strength, low friction, or resistance to harsh environments. These cages are used in specialized applications where unique material properties are required.

The selection of the cage design and materials is a critical aspect of rolling contact bearing design. Careful consideration of the operating conditions, load requirements, speed, and other factors helps ensure optimal performance, reliability, and durability of the bearing.

rolling contact bearing

How do rolling contact bearings contribute to reduced friction and improved efficiency in machinery?

Rolling contact bearings play a crucial role in reducing friction and improving the efficiency of machinery. They achieve this through several design features and operating characteristics. Here’s a detailed explanation of how rolling contact bearings contribute to reduced friction and improved efficiency:

  • Rolling Motion:

Unlike sliding contact bearings, which rely on sliding friction between surfaces, rolling contact bearings utilize rolling motion between the rolling elements (balls or rollers) and the raceways. This rolling motion significantly reduces friction compared to sliding friction, resulting in lower energy losses and improved efficiency. The rolling contact between the elements and the raceways minimizes surface contact and allows smooth rotation with reduced frictional resistance.

  • Lubrication:

Rolling contact bearings are typically lubricated with oils or greases to further reduce friction and wear. Lubricants form a thin film between the rolling elements and the raceways, providing a protective layer that separates the surfaces and minimizes direct metal-to-metal contact. This lubricating film reduces friction and dissipates heat generated during operation, contributing to smoother rotation and improved efficiency.

  • Reduced Sliding Friction:

As mentioned earlier, rolling contact bearings rely on rolling motion rather than sliding friction. This design characteristic reduces the occurrence of sliding friction between the bearing components, resulting in lower frictional forces and decreased energy losses. The reduced sliding friction contributes to improved efficiency and can translate into energy savings in various machinery applications.

  • Load Distribution:

Rolling contact bearings distribute loads more evenly compared to sliding contact bearings. The rolling elements in a bearing share the load and distribute it over a larger contact area, reducing localized stress and minimizing friction. This load distribution characteristic helps prevent excessive wear and prolongs the service life of the bearing. By maintaining efficient load distribution, rolling contact bearings contribute to improved efficiency and reliability in machinery.

  • High-Speed Capability:

Rolling contact bearings are well-suited for high-speed applications due to their low friction characteristics. The rolling motion and reduced sliding friction allow these bearings to rotate at higher speeds with minimal heat generation. This high-speed capability is essential for various machinery, such as electric motors, machine tools, and automotive components, where efficient power transmission and rotational precision are critical for optimal performance and efficiency.

In summary, rolling contact bearings contribute to reduced friction and improved efficiency in machinery through their rolling motion, effective lubrication, reduced sliding friction, even load distribution, and high-speed capability. These design features and operating characteristics minimize energy losses, reduce wear, and enhance the overall performance and reliability of machinery in a wide range of industries.

China Professional Spindle Bearing 7206 Ctrsulp4 Angular Contact Ball Bearing   with Great qualityChina Professional Spindle Bearing 7206 Ctrsulp4 Angular Contact Ball Bearing   with Great quality
editor by CX 2024-04-12

China wholesaler Spindle Bearing 760202 Angular Contact Ball Bearing bearing block

Product Description

Ball Screw
765712 Tn1/P4

Detailed Photos

 

Bearing No. 765712 Tn1/P4
D 35 mm
d 15 mm
B 11 mm
Cr 12.5 kN
C0r 15 kN
Limiting Speed 15000 r/min
Weight 0.05 kg

 

Packaging & Shipping

After Sales Service

 

FAQ

 

Why our bearing is better than other?
Material
We usually use bearing steel (GCr15), but many manufacturers only use softer carbon steel materials, so our bearings have higher hardness and longer service life.

Heat treatment
We have our own heat treatment plant and do not need to be outsourced. We use a slower speed and more stable temperature to effectively control the steel and increase the toughness and life of the steel.
Other small-scale bearing companies usually need to outsource. Many outsourcing factories only strengthen the hardness of the bearing surface due to cost factors, but the hardness inside is not enough, which is the reason why many bad bearings are easy to crack.

Precision
Our bearings can be controlled at a height accuracy of 0~-0.004mm, fast speed and smoothness.

Multiple grinding process
We grind the bearing many times, but others may grind it only once, so the chamfer of our bearing is very smooth.

In conclusion
We use high-quality materials and multiple grinding processes, so our bearings have the characteristics of high speed, low noise,high precision and long life.

Quality guarantee
we give our customers 1 year quality warrantee for the bearings.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China wholesaler Spindle Bearing 760202 Angular Contact Ball Bearing   bearing blockChina wholesaler Spindle Bearing 760202 Angular Contact Ball Bearing   bearing block
editor by CX 2024-04-10