Tag Archives: bearing roller bearing

China high quality Good Service Unseparated Roller Angular Contact Ball Bearing 1688 Rolling Mill Bearings drive shaft bearing

Product Description

Factory Price Gas Turbine Bearings Cylindrical Roller Bearing Nu207 Nu209 Nu211 E/M/Etn1

Product Description

Cylindrical Roller bearing is 1 of the rolling bearings, which is widely used in modern machinery.It relies on rolling contact between the main components to support the rotating parts.Roller bearings are now mostly standardized.Roller bearing has the advantages of small torque required for starting, high rotation accuracy and convenient selection.

Product name Cylindrical roller bearing
Material Bearing Steel
Standard DIN GB ISO JIS
Bearing Package Barreled, bagged, boxed, palletized or as customers’ requirement.
Service OEM service provided
Delivery time 3-10 days depends on quantity needed

Characteristics:
Less friction and low noise, durable.
Ability to carry heavy loads
Less coefficient of friction.
High limiting speed.
Variations of structure:N,NU,NJ,NF,NUP,NFP,NH,NN,NNU,NNF,FC,FCD.
Physical Characteristics:
Cylindrical roller bearing can be separated by single row,double rows, and 4 rows.
This kind of bearing can be submitted to high radial load and some axial load.
The rolling element of a cylindrical roller bearing is cylinder, the 2 ends of the external lines have the corrective slope which can eliminate the contact stress.
 NN and NNU design cylindrical roller bearing have high rigid and apply to machines such as milling

 diameter         (mm)  Bearing Designation                               Boundary Dimensions       (mm)  Basic Load Ratings        (N)       Limiting Speeds (rpm)  Weight (Kg)
 Current Designation d D B rsmin r1smin Cr Dynamic Cor Static Grease Oil
16 SZ-4101 16 44 8.3     15700 18000     0. 0571 1
17 N203 17 40 12 0.6 0.3 11400 9100 16000 19000 0.07800
NJ203 17 40 12 0.7 0.3 11400 9100 16000 19000 0.06900
NJ203ETN1 17 40 12 0.6 0.6 16900 13800 16000 19000 0. 0571 8
NU203 17 40 12 0.6 0.3 11400 9100 16000 19000 0.07000
NU203ETN1 17 40 12 0.6 0.3 16900 13800 16000 19000 0.06654
NJ2203E 17 40 16 0.6 0.3 22800 20300 13800 16400 0.09200
20 N204 20 47 14 1 0.6 15800 13100 13800 16400 0.13300
NF204 20 47 14 1 0.6 15800 13100 13800 16400 0.11000
NJ204 20 47 14 1.1 0.7 17000 14400 13800 16400 0.14000
NU204 20 47 14 1 0.6 15800 13100 13800 16400 0.13500
NU204/C3 20 47 14 1 0.6 14400 13100 13800 16400 0.10670
N304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.14470
NJ304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.15750
NU304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.15190
NUP304ETN1 20 52 15 1.1 0.6 31500 26800 10600 13100 0.15582
NJ2304ETN1 20 52 21 1.1 0.6 42000 38700 10000 13000 0.21267

Our Advantages

                                                              1. World-Class Bearing:
 We provide our customers with all types of indigenous bearing with world-class quality.

2. OEM or Non-Stand Bearings: 
Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality:
 The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery:
 The company provides just-in-time delivery with its streamlined supply chain.
 

SAMPLES
1. Samples quantity: 1-10 PCS are available.
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3. It’s better to start your order with Trade Assurance to get full protection for your samples order.
CUSTOMIZED
The customized LOGO or drawing is acceptable for us.
MOQ
1. MOQ: 10 PCS standard bearings.
2. MOQ: 1000 PCS customized your brand bearings.
OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield.
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

FAQ

1.What is the minimum order quantity for this product?

Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-10 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.
 

Please feel free to contact us, if you have any other question

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Medium and Large(120-190mm)
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

How do rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment?

Rolling contact bearings play a crucial role in enhancing the overall efficiency and functionality of machinery and equipment. Here’s a detailed explanation of how rolling contact bearings contribute to improved efficiency and functionality:

  • Reduced Friction:

Rolling contact bearings are designed to minimize friction between moving parts. They consist of rolling elements, such as balls or rollers, that reduce the contact surface area and enable rolling motion. This rolling action results in lower friction compared to sliding contact, allowing machinery to operate with reduced energy consumption. By reducing frictional losses, rolling contact bearings help optimize the efficiency of machinery and equipment.

  • Load Distribution:

Rolling contact bearings distribute loads evenly across their rolling elements. This load distribution capability ensures that the forces acting on the machinery are spread out and shared by multiple bearing points. By distributing the load, rolling contact bearings help prevent excessive stress on individual components and minimize the risk of premature failure. This improves the overall functionality and reliability of machinery, allowing it to operate under heavy loads without compromising performance.

  • High-Speed Capability:

Rolling contact bearings are designed to operate at high speeds. The rolling elements and raceways are precisely engineered to minimize the centrifugal forces and minimize frictional heat generation. This allows machinery and equipment to achieve higher rotational speeds without compromising performance or reliability. The high-speed capability of rolling contact bearings is particularly advantageous in applications such as automotive engines, turbines, machine tools, and high-speed manufacturing processes.

  • Reduced Vibration and Noise:

Rolling contact bearings help reduce vibration and noise in machinery and equipment. The rolling action of the bearing elements minimizes friction-induced vibrations, resulting in smoother operation. Additionally, well-designed and properly lubricated rolling contact bearings dampen vibrations caused by external forces or imbalances in rotating parts. By reducing vibration and noise levels, rolling contact bearings contribute to a quieter and more comfortable working environment, as well as improved accuracy and precision in equipment that requires high levels of stability.

  • Versatility and Flexibility:

Rolling contact bearings offer versatility and flexibility in machinery design. They come in various types and configurations, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, and tapered roller bearings, each suited for specific applications and load conditions. The availability of different bearing sizes and designs allows engineers and designers to select the most appropriate bearing for their specific machinery requirements. This versatility and flexibility enable the optimization of machinery performance and functionality.

  • Compact Design:

Rolling contact bearings enable compact and space-saving machinery designs. Their ability to handle high loads while occupying minimal space allows for the creation of more compact equipment. This is particularly beneficial in applications where space is limited, such as automotive, aerospace, and portable devices. The compact design made possible by rolling contact bearings enhances the overall functionality and efficiency of machinery by maximizing the use of available space.

In summary, rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment through reduced friction, load distribution, high-speed capability, vibration and noise reduction, versatility and flexibility in design, and compactness. By optimizing the performance of rotating components, rolling contact bearings contribute to improved energy efficiency, reliability, precision, and longevity of machinery and equipment in various industries.

rolling contact bearing

What are the common types of rolling contact bearings, such as ball bearings or roller bearings?

Rolling contact bearings are available in various types, each designed to accommodate specific load capacities, speeds, and application requirements. The most common types of rolling contact bearings include ball bearings and roller bearings. Here’s a detailed explanation of these common types:

  • Ball Bearings:

Ball bearings are the most widely used type of rolling contact bearings. They consist of one or more rows of balls placed between two rings—an inner ring and an outer ring. The balls roll along the raceways formed on the rings, enabling smooth and low-friction rotation. Ball bearings are known for their high rotational speeds, low starting torque, and relatively low load capacity compared to roller bearings.

There are several variations within the category of ball bearings, including:

  • Deep Groove Ball Bearings: These ball bearings have deep raceway grooves, allowing them to accommodate both radial and axial loads. They are commonly used in applications such as electric motors, appliances, and automotive components.
  • Angular Contact Ball Bearings: Angular contact ball bearings can handle both radial and axial loads. They have an angled contact surface between the balls and the raceways, enabling them to support higher axial loads and facilitate combined radial and axial movements. These bearings are often used in machine tools, pumps, and gearboxes.
  • Thrust Ball Bearings: Thrust ball bearings are designed to support axial loads in a single direction. They consist of two rings with a set of balls sandwiched between them. Thrust ball bearings are commonly used in applications such as automotive transmissions and steering systems.
  • Roller Bearings:

Roller bearings, as the name implies, utilize cylindrical or tapered rollers instead of balls to facilitate motion. Roller bearings are capable of handling higher loads and are often used in heavy-duty applications. The common types of roller bearings include:

  • Cylindrical Roller Bearings: Cylindrical roller bearings feature cylindrical rollers that provide a large contact area with the raceways. They can accommodate high radial loads and moderate axial loads. Cylindrical roller bearings are commonly used in applications such as machine tool spindles, electric motors, and gearboxes.
  • Tapered Roller Bearings: Tapered roller bearings consist of tapered rollers and inner and outer rings with tapered raceways. They can support both radial and axial loads in a single direction. Tapered roller bearings are commonly used in automotive wheel bearings, heavy machinery, and construction equipment.
  • Spherical Roller Bearings: Spherical roller bearings have barrel-shaped rollers and two raceways on the inner and outer rings that are inclined relative to the bearing axis. This design allows them to accommodate misalignment and axial displacement. Spherical roller bearings are commonly used in applications with heavy loads, such as mining equipment, paper mills, and crushers.
  • Needle Roller Bearings: Needle roller bearings use long, thin rollers that have a high length-to-diameter ratio. They are suitable for applications with limited radial space and high load capacity. Needle roller bearings are commonly used in automotive transmissions, industrial gearboxes, and motorcycle engines.

These are some of the common types of rolling contact bearings, including ball bearings and roller bearings. Each type has its own advantages and is suitable for specific applications based on factors such as load requirements, speed, and space limitations.

China high quality Good Service Unseparated Roller Angular Contact Ball Bearing 1688 Rolling Mill Bearings   drive shaft bearingChina high quality Good Service Unseparated Roller Angular Contact Ball Bearing 1688 Rolling Mill Bearings   drive shaft bearing
editor by CX 2024-05-14

China Hot selling Steel Roller Bearings Rolling Mill Used Angular Contact Ball Slewing Bearing Hot Sale with Best Sales

Product Description

Factory Price Gas Turbine Bearings Cylindrical Roller Bearing Nu207 Nu209 Nu211 E/M/Etn1

Product Description

Cylindrical Roller bearing is 1 of the rolling bearings, which is widely used in modern machinery.It relies on rolling contact between the main components to support the rotating parts.Roller bearings are now mostly standardized.Roller bearing has the advantages of small torque required for starting, high rotation accuracy and convenient selection.

Product name Cylindrical roller bearing
Material Bearing Steel
Standard DIN GB ISO JIS
Bearing Package Barreled, bagged, boxed, palletized or as customers’ requirement.
Service OEM service provided
Delivery time 3-10 days depends on quantity needed

Characteristics:
Less friction and low noise, durable.
Ability to carry heavy loads
Less coefficient of friction.
High limiting speed.
Variations of structure:N,NU,NJ,NF,NUP,NFP,NH,NN,NNU,NNF,FC,FCD.
Physical Characteristics:
Cylindrical roller bearing can be separated by single row,double rows, and 4 rows.
This kind of bearing can be submitted to high radial load and some axial load.
The rolling element of a cylindrical roller bearing is cylinder, the 2 ends of the external lines have the corrective slope which can eliminate the contact stress.
 NN and NNU design cylindrical roller bearing have high rigid and apply to machines such as milling

 diameter         (mm)  Bearing Designation                               Boundary Dimensions       (mm)  Basic Load Ratings        (N)       Limiting Speeds (rpm)  Weight (Kg)
 Current Designation d D B rsmin r1smin Cr Dynamic Cor Static Grease Oil
16 SZ-4101 16 44 8.3     15700 18000     0. 0571 1
17 N203 17 40 12 0.6 0.3 11400 9100 16000 19000 0.07800
NJ203 17 40 12 0.7 0.3 11400 9100 16000 19000 0.06900
NJ203ETN1 17 40 12 0.6 0.6 16900 13800 16000 19000 0. 0571 8
NU203 17 40 12 0.6 0.3 11400 9100 16000 19000 0.07000
NU203ETN1 17 40 12 0.6 0.3 16900 13800 16000 19000 0.06654
NJ2203E 17 40 16 0.6 0.3 22800 20300 13800 16400 0.09200
20 N204 20 47 14 1 0.6 15800 13100 13800 16400 0.13300
NF204 20 47 14 1 0.6 15800 13100 13800 16400 0.11000
NJ204 20 47 14 1.1 0.7 17000 14400 13800 16400 0.14000
NU204 20 47 14 1 0.6 15800 13100 13800 16400 0.13500
NU204/C3 20 47 14 1 0.6 14400 13100 13800 16400 0.10670
N304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.14470
NJ304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.15750
NU304 20 52 15 1.1 0.6 21800 17700 11400 13800 0.15190
NUP304ETN1 20 52 15 1.1 0.6 31500 26800 10600 13100 0.15582
NJ2304ETN1 20 52 21 1.1 0.6 42000 38700 10000 13000 0.21267

Our Advantages

                                                              1. World-Class Bearing:
 We provide our customers with all types of indigenous bearing with world-class quality.

2. OEM or Non-Stand Bearings: 
Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality:
 The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery:
 The company provides just-in-time delivery with its streamlined supply chain.
 

SAMPLES
1. Samples quantity: 1-10 PCS are available.
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3. It’s better to start your order with Trade Assurance to get full protection for your samples order.
CUSTOMIZED
The customized LOGO or drawing is acceptable for us.
MOQ
1. MOQ: 10 PCS standard bearings.
2. MOQ: 1000 PCS customized your brand bearings.
OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield.
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

FAQ

1.What is the minimum order quantity for this product?

Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-10 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.
 

Please feel free to contact us, if you have any other question

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Medium and Large(120-190mm)
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rolling contact bearing

Are there specific industries or applications where rolling contact bearings are frequently used?

Rolling contact bearings find extensive use in various industries and applications due to their versatility, load-carrying capacity, and efficiency. Here’s a detailed explanation of some specific industries and applications where rolling contact bearings are frequently employed:

  • Automotive Industry:

The automotive industry extensively utilizes rolling contact bearings in various components and systems. These bearings are found in engines, transmissions, wheel hubs, suspension systems, steering columns, and different drivetrain components. In the automotive sector, rolling contact bearings provide reliable support for rotating shafts, facilitate smooth wheel rotation, and contribute to overall vehicle performance and safety.

  • Aerospace Industry:

Rolling contact bearings play a critical role in the aerospace industry, where they are used in aircraft engines, landing gear systems, control surfaces, and various other applications. These bearings provide reliable and precise rotation in demanding aerospace environments, contributing to the safety, efficiency, and performance of aircraft.

  • Industrial Machinery:

Rolling contact bearings are widely employed in a broad range of industrial machinery. They are found in machine tools, industrial pumps, compressors, conveyors, printing machines, textile machinery, and many other equipment types. These bearings support the rotating components of machinery, enabling smooth and efficient operation while withstanding heavy loads and high speeds.

  • Power Generation:

In the power generation sector, rolling contact bearings are utilized in turbines, generators, wind turbines, and other power generation equipment. These bearings withstand the rotational forces and high temperatures associated with power generation, contributing to the efficient conversion of mechanical energy into electrical energy.

  • Mining and Construction:

Rolling contact bearings are widely used in mining and construction equipment, such as crushers, conveyors, excavators, and bulldozers. These bearings are designed to handle heavy loads, shock loads, and harsh operating conditions commonly encountered in mining and construction applications.

  • Railway Industry:

In the railway industry, rolling contact bearings are utilized in locomotives, passenger trains, freight cars, and rail infrastructure. These bearings support the axles, wheels, and other rotating components of railway systems, ensuring smooth and reliable operation while withstanding the dynamic forces and heavy loads associated with rail transportation.

  • Wind Energy:

The wind energy sector relies on rolling contact bearings in wind turbines. These bearings support the rotor shaft, allowing efficient rotation of the turbine blades to convert wind energy into electrical power. Rolling contact bearings in wind turbines are subjected to high axial and radial loads, as well as challenging environmental conditions.

These are just a few examples of the industries and applications where rolling contact bearings are frequently used. They are also employed in countless other sectors, including marine, agriculture, medical equipment, robotics, and more. The versatility and effectiveness of rolling contact bearings make them an essential component in a wide range of machinery and equipment across various industries.

rolling contact bearing

Can you describe the various types of seals and shields used with rolling contact bearings for contamination prevention?

Various types of seals and shields are used with rolling contact bearings to prevent contamination and protect the bearing internals. Here’s a detailed description of the commonly used seals and shields:

  • Contact Seals:

Contact seals, also known as lip seals or radial seals, are designed to provide a barrier against contaminants while maintaining lubricant retention within the bearing. These seals consist of a flexible lip that makes contact with the inner or outer ring of the bearing. The lip is typically made of synthetic rubber or elastomeric material. Contact seals effectively prevent the entry of solid particles, liquids, and other contaminants into the bearing. They are suitable for applications with moderate operating speeds and rotational requirements where the sealing function takes priority over low friction.

  • Non-Contact Seals:

Non-contact seals, also known as labyrinth seals or gap seals, create a labyrinthine path that hinders the entry of contaminants into the bearing. These seals do not make physical contact with the bearing rings, resulting in lower friction and reduced heat generation compared to contact seals. Non-contact seals are typically constructed using metallic or non-metallic components with precise geometries to create a tortuous path for contaminants. They are suitable for high-speed applications and environments where low friction and minimal heat generation are important considerations.

  • Shields:

Shields, also referred to as metal shields or non-contact shields, provide a physical barrier between the rolling elements and the external environment. Shields are typically made of metal, such as steel, and are attached to the outer ring of the bearing. They cover a portion of the bearing’s circumference, leaving a small gap for the rolling elements to function. Shields offer effective protection against larger particles and prevent the direct contact of contaminants with the rolling elements. However, they do not provide a complete seal, allowing for limited air circulation and lubricant flow within the bearing.

  • Hybrid Seals:

Hybrid seals combine the advantages of contact seals and non-contact seals. These seals use a combination of contacting and non-contacting elements to provide enhanced protection against contamination. Hybrid seals are designed to reduce friction and heat generation while offering improved sealing performance compared to contact seals. They typically incorporate a non-contacting labyrinth or gap seal with additional contact elements, such as lip seals or brush seals, to provide a more effective barrier against contaminants.

  • Ingress Protection (IP) Ratings:

In addition to the specific seal and shield types, rolling contact bearings may also be assigned Ingress Protection (IP) ratings. IP ratings indicate the level of protection provided against solid particles, such as dust and dirt, as well as liquids, such as water and oil. The IP rating is typically represented by a two-digit number, where the first digit represents the level of protection against solid particles, and the second digit represents the level of protection against liquids. Higher IP ratings indicate greater protection against contaminants.

The selection of the appropriate seal or shield type depends on various factors, including the application requirements, operating conditions, contamination risks, and desired friction characteristics. Manufacturers typically provide information on the recommended sealing options for their bearing products, considering the specific application needs and environmental conditions.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China Hot selling Steel Roller Bearings Rolling Mill Used Angular Contact Ball Slewing Bearing Hot Sale   with Best SalesChina Hot selling Steel Roller Bearings Rolling Mill Used Angular Contact Ball Slewing Bearing Hot Sale   with Best Sales
editor by CX 2024-05-10

China OEM Kg250aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Bearing Thin Section B bearing bronze

Product Description

JA035CP0 Thin Section sealed Ball Bearing with a 1/4″ cross section width, JA035CP0 bearing is a popular item that could be used in many applications, the dimensions are 3 1/2″ x 4″ x 1/4″ inch, JA035CP0 bearing has Brass balls retainer, JA035CP0 bearing is oil preserved.Item: JA035CP0 Ball BearingType: Deep groove Radial Ball BearingMaterial: Chrome SteelBrand: Cage: BrassClosures: OpenDimensions: 3 1/2″ x 4″ x 1/4″ inchID (inner diameter)/Bore: 3 1/2″ inchOD (outer diameter): 4″ inchWidth/Height/thickness: 1/4″ inchSize: 3.5″ x 4″ x 0.25″Cross Section: 1/4″ inchDynamic load rating: 2095 NStatic load rating: 5836 NQuantity: One BearingKAA  opening  type  4.762mm(CP0/XP0/AR0

KAA571,KAA015,KAA017

KA  opening  type 6.35mm(CP0/XP0/AR0

KA571,KA571,KA030,KA035,KA040,KA042,

KA045,KA050,KA055,KA060,KA065,KA070,

KA075,KA080,KA090,KA100,KA110,KA120,

KA140,KA180,KA200

KB  opening  type 7.938mm(CP0/XP0/AR0

KB571,KB571,KB030,KB035,KB040,KB042,

KB045,KB050,KB055,KB060,KB065,KB070,

KB075,KB080,KB090,KB100,KB110,KB120,

KB140,KB180,KB200

KC opening  9.525mm(CP0/XP0/AR0

KC040,KC042,KC045,KC050,KC055,KC060,

KC065,KC070,KC075,KC080,KC090,KC100,

KC110,KC120,KC140,KC180,KC200

KD   opening   type 12.7mm(CP0/XP0/AR0

KD040,KD042,KD045,KD050,KD055,KD060,

KD065,KD070,KD075,KD080,KD090,KD100,

KD110,KD120,KD140,KD180,KD200

KF  opening  type  19.05mm(CP0/XP0/AR0

KF040,KF042,KF045,KF050,KF055,KF060,

KF065,KF070,KF075,KF080,KF090,KF100,

KF110,KF120,KF140,KF180,KF200

KG  open  25.4mm(CP0/XP0/AR0

KG040,KG042,KG045,KG050,KG055,

KG060,KG065,KG070,KG075,KG080,

KG090,KG100,KG110,KG120,KG140,

KG180,KG200,KG250,KG300,KG400

JA   seals 6.35mm(CP0/XP0/A

JHA571,JHA015,JA571,JA571,JA030,JA035,

JA040,JA042,JA045,JA050,JA055,JA060,JA065

JB  seals 7.938mm(CP0/XP0/AR

JB571,JB571,JB030,JB035,JB040,JB042,

JB045,JB050,JB055,JB060,JB065

JU  seals 12.7mm(CP0/XP0/AR

JU040,JU042,JU045,JU050,JU055,JU060,

JU065,JU070,JU075,JU080,JU090,JU100,

JU110,JU120

JG   seals  25.4mm(CP0/XP0/AR0

JG120,JG140,JG160,JG180

5mm-360mm   is  8mm,13mm,20mm

 thick 8mm    (CP0/XP0/

K57108,K05008,K06008,K07008,K08008,K09008,K10008,K11008,

K12008,K13008,K14008,K15008,K16008,K17008,K1K20008,K25008,K30008,K32008,K34008,K36  thick 13mm  open (CP0/XP0/

K57113,K05013,K06013,K 0571 3,K08013,K 0571 3,K10013,K11013,

K12013,K13013,K14013,K15013,K16013,K17013,K18013,K19013,

K20013,K25013,K30013,K32013,K34013,K36013

T20mm(CP0/XP0/

K571hinck  20,K 0571 1,K06571,K5711,K 0571 1,K09571,K1571,K11571,

K12571,K13571,K14571,K15571,K16571,K17571,K18571,K19571,

K2571,K25571,K3571,K32571,K34571,K36571

 thick 8mm   Seals (CP0/XP0/ARO

J57108,J05008,J06008,J07008,J08008,J09008,J10008,J11008,

J12008,J13008,J14008,J15008,J16008,J1700

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision: P0.P6.P5
Cage Material: Brass.Nylon Plastic Full Ball
Outer Ring: Chrome Steel
Inner Ring: Gcr15
Weight: 8.845kg
Contact Angle: 25°

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

China OEM Kg250aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Bearing Thin Section B   bearing bronzeChina OEM Kg250aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Bearing Thin Section B   bearing bronze
editor by CX 2024-05-08

China Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing bearing block

Product Description

 

Angular contact ball bearing

Angular Contact Ball Bearings can bear radial load and axial load at the same time. It can work at higher speeds. The larger the contact angle, the higher the axial load carrying capacity. The contact angle is the angle between the line of contact points between the ball and the raceway in the radial plane and the vertical line of the bearing axis. High-precision and high-speed bearings usually take a contact angle of 15 degrees. Under the action of axial force, the contact angle will increase.

Company Profile

In 2013, 1 associates decided to create an innovative sales service of bearings to satisfy diffierent kinds of application.

In order to supply even more stable quality to our vast customers, we established a factory in HangZhou city, ZHangZhoug province, China, near HangZhou and ZheJiang port, which has recognized by special ISO. The various bearings we produce there have been inspected and confirmed by SGS to be RoHS compliant.

In order to satisfy our customer’s diffierent industrial requirement: Advises, quick quotations, quick delievery, difficullt sourcing bearing products, the best suitable bearing(price, quality), We are working with over 300 suppliers to make sure to get the perfect part for you. We strive to offer the most precise and most suitable bearing for each part.

We Registered “GNYAR” in 2014, registered “MAJC” in 2018, both was received in high-performance praise, and earned high reputation among customers from motorcycle parts, auto parts and embroidery machine spare parts, Power tools, agricultural machine, bicycle, Semiconductor Facilities. Fitness Equipments, Toys, fishing, industrial using design.

After years of development, we believe that by establishing a mutually beneficial relationship with our customers we can both continue to grow and prosper, we wish and hope to always grant you satisfaction.

Other products

Product application

Packaging & Shipping

 

FAQ

 

Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibility when defective product is found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we are CZPT to customize housings in different styles, and sizes in different brands, we also customize circuit board & packaging box as per your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Normal
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing   bearing blockChina Standard Bearing Cheap Bearings Auto Parts for Sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing   bearing block
editor by CX 2024-05-08

China Custom Sc060cpo Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings bearing and race

Product Description

KAA  opening  type  4.762mm(CP0/XP0/AR0

KAA571,KAA015,KAA017

KA  opening  type 6.35mm(CP0/XP0/AR0

KA571,KA571,KA030,KA035,KA040,KA042,

KA045,KA050,KA055,KA060,KA065,KA070,

KA075,KA080,KA090,KA100,KA110,KA120,

KA140,KA180,KA200

KB  opening  type 7.938mm(CP0/XP0/AR0

KB571,KB571,KB030,KB035,KB040,KB042,

KB045,KB050,KB055,KB060,KB065,KB070,

KB075,KB080,KB090,KB100,KB110,KB120,

KB140,KB180,KB200

KC opening  9.525mm(CP0/XP0/AR0

KC040,KC042,KC045,KC050,KC055,KC060,

KC065,KC070,KC075,KC080,KC090,KC100,

KC110,KC120,KC140,KC180,KC200

KD   opening   type 12.7mm(CP0/XP0/AR0

KD040,KD042,KD045,KD050,KD055,KD060,

KD065,KD070,KD075,KD080,KD090,KD100,

KD110,KD120,KD140,KD180,KD200

KF  opening  type  19.05mm(CP0/XP0/AR0

KF040,KF042,KF045,KF050,KF055,KF060,

KF065,KF070,KF075,KF080,KF090,KF100,

KF110,KF120,KF140,KF180,KF200

KG  open  25.4mm(CP0/XP0/AR0

KG040,KG042,KG045,KG050,KG055,

KG060,KG065,KG070,KG075,KG080,

KG090,KG100,KG110,KG120,KG140,

KG180,KG200,KG250,KG300,KG400

JA   seals 6.35mm(CP0/XP0/A

JHA571,JHA015,JA571,JA571,JA030,JA035,

JA040,JA042,JA045,JA050,JA055,JA060,JA065

JB  seals 7.938mm(CP0/XP0/AR

JB571,JB571,JB030,JB035,JB040,JB042,

JB045,JB050,JB055,JB060,JB065

JU  seals 12.7mm(CP0/XP0/AR

JU040,JU042,JU045,JU050,JU055,JU060,

JU065,JU070,JU075,JU080,JU090,JU100,

JU110,JU120

JG   seals  25.4mm(CP0/XP0/AR0

JG120,JG140,JG160,JG180

5mm-360mm   is  8mm,13mm,20mm

 thick 8mm    (CP0/XP0/

K57108,K05008,K06008,K07008,K08008,K09008,K10008,K11008,

K12008,K13008,K14008,K15008,K16008,K17008,K1K20008,K25008,K30008,K32008,K34008,K36  thick 13mm  open (CP0/XP0/

K57113,K05013,K06013,K 0571 3,K08013,K 0571 3,K10013,K11013,

K12013,K13013,K14013,K15013,K16013,K17013,K18013,K19013,

K20013,K25013,K30013,K32013,K34013,K36013

T20mm(CP0/XP0/

K571hinck  20,K 0571 1,K06571,K5711,K 0571 1,K09571,K1571,K11571,

K12571,K13571,K14571,K15571,K16571,K17571,K18571,K19571,

K2571,K25571,K3571,K32571,K34571,K36571

 thick 8mm   Seals (CP0/XP0/ARO

J57108,J05008,J06008,J07008,J08008,J09008,J10008,J11008,

J12008,J13008,J14008,J15008,J16008,J1700

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision: P0.P6.P5
Cage Material: Brass.Nylon Plastic Full Ball
Outer Ring: Chrome Steel
Inner Ring: Gcr15
Weight: 0.113kg
Structure: Xpo Aro Cpo

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China Custom Sc060cpo Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings   bearing and raceChina Custom Sc060cpo Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings   bearing and race
editor by CX 2024-05-07

China Professional All Series Bearings Needle Roller Thrust Cylindrical Pillow Block Ball Deep Groove Ball Auto Angular Contact Tapered Roller Spherical Rolling Bearing with Hot selling

Product Description

   

Company Profile

       MKS Hydraulics ZheJiang Co., Ltd.is a scientific and professional bearing producing enterprise, gathering R&D, producing and sales as 1  integration.mainly operating on non-standard, special andgeneral bearings.

       The company is especially focusing on the research and manufacture of general high-tech production with the 20 years R&D experience, professional R&D staff and advanced equipment, of which 8 sets are imported equipment and 40 sets are high-precision processing equipment. it has invested for building a modern workshop, including 1 Bainite heat processing workshop of world advanced level, 1 machine processing workshop, 2 moder thermostatic &no-dust roller grinders, assembly workshop, physical-chemical testing center, heating laboratory and moder-managed warehouse. Depending on the markets in China and abroad, the company puts an active attitude upon products R&D, resulting a healthy circulation of 1 development generation, 1 reserve generation, and 1 producion generation. The enterprise enlarges the R&D investment, creates own brand, and strives to increase the exporting products of high-tech & high value-added, gains the honorable sales result and grows into 1 of the largest R&D enterprise in China of non-standard bearing and special bearing.

       The advanced technology, outstanding quaity and considerable service after sales with enthusiasm make us get the rapid development in quite short time of years, and now it becomes the largest developing and producing enterprise in Asia of concrete carrier truck, speed-reducing machine,mine-digging machine, hydraulic pump spindle bearing and crecent bearing. With the continuing and wholly new developing theory of Technology is the motivation and quality is the life, We are not only pursuing the leading position in China, but also determined to march into the worldwide bearing area during it developing process, The products are mainly applied on the industries of mine, metalurgy, engineering, machineny, machine tool,electronic machine and so on, The products have gained the excllent sales resul in the markets of Europe, Southeast Asia, Middle East and so on in a dozen of countries and areas.

Company Environment

Company Advantages

Packaging & Shipping

FAQ

1. how can we guarantee quality?
Always final Inspection before shipment;

2.what can you buy from us?
Auto Bearing,Bearing Housing,Taper Roller Bearing,Casting,Hydraulic pump,Hydraulic parts,excavator parts and so on.

Ceep groove ball bearing/Self aligning ball bearing/Cylindrical roller bearing/Spherical roller bearing/ Angular contact ball bearing/Tapered roller bearing/ Thrust ball bearing/Thrust cylindrical roller bearing/Needle roller bearing

3. why should you buy from us not from other suppliers?
One stop bearing and mechanical customized parts,
Designed bearing,
Small quantity order available 
Factory price offer
OEM ODM bearing service

4.What is the transportation?
lf small quantity,we suggest to send by express,such as DHL,UPS,TNT FEDEX flarge amount,by air or sea shipping.

5.Can we design packaging?
Except regular packing,and we can make customer’s own packing.

6.What’s your payment method?
We can accept LC, T/T, D/P, PayPal, Western Union, Small-amount payment, MoneyGram etc.

7.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

8.Is the company a production factory or a trading company?
MKS company is a manufacturing enterprise focusing on bearings ,hydraulic pumps and hydraulic parts , produce and sales.

If you have any questions,Please contact us,We must be reply quickly.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Raceway Super Finishing: Yes
Bearing Grade: P3
Service: OEM / ODM Customized Logo
Shipment: by Sea, by Air, by Express
Quality: Good /High Quality
Features: High Precision, High Speed, Long Life
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

What are the potential challenges or limitations associated with using rolling contact bearings in various industries?

Rolling contact bearings offer numerous benefits and are widely used in various industries. However, there are certain challenges and limitations associated with their use. It is important to understand these potential issues to ensure proper application and mitigate any adverse effects. Here’s a detailed explanation of the challenges and limitations associated with using rolling contact bearings:

  • Load Capacity:

While rolling contact bearings are designed to handle substantial loads, there are limitations to their load capacity. Exceeding the specified load limits can lead to premature wear, increased friction, and potentially catastrophic failure. It is crucial to consider the expected loads in the application and select bearings with appropriate load ratings and configurations. In some high-load applications, alternative bearing types, such as spherical roller bearings or tapered roller bearings, may be more suitable to handle the specific load requirements.

  • Speed Limitations:

Rolling contact bearings have speed limitations that need to be considered in high-speed applications. At high rotational speeds, centrifugal forces can affect the performance and reliability of rolling contact bearings. The limitation is primarily due to factors such as the bearing’s internal clearance, cage design, lubrication, and the potential for increased heat generation. To overcome speed limitations, specialized high-speed bearings with improved designs and materials, such as ceramic balls or hybrid bearings, may be used in certain applications.

  • Maintenance and Lubrication:

Proper maintenance and lubrication are essential for the reliable operation of rolling contact bearings. Inadequate lubrication or improper maintenance practices can result in increased friction, heat buildup, and premature wear. It is important to follow the manufacturer’s recommendations for lubrication intervals, lubricant selection, and application methods. In some applications, such as high-temperature environments or extreme operating conditions, special considerations may be required to ensure effective lubrication and prevent bearing failure.

  • Environmental Factors:

Rolling contact bearings can be sensitive to certain environmental factors. Exposure to contaminants, such as dirt, dust, moisture, or aggressive chemicals, can lead to accelerated wear and corrosion. In industries where the operating environment is harsh or contaminated, additional protective measures, such as sealing arrangements or the use of specialized coatings, may be necessary to enhance the bearing’s resistance to environmental factors. It is important to evaluate the specific environmental conditions and select bearings that are suitable for the intended application.

  • Installation and Alignment:

Improper installation or misalignment of rolling contact bearings can result in reduced performance and premature failure. Achieving accurate alignment and proper fitment during installation is crucial. Misalignment can lead to increased friction, uneven load distribution, and potential damage to the bearing surfaces. It is necessary to follow the manufacturer’s installation guidelines, use appropriate tools, and employ precision alignment techniques to ensure optimal performance and longevity of the bearings.

  • Size and Space Constraints:

In some applications, size and space constraints may limit the use of rolling contact bearings. The available space for bearing installation may be limited, requiring the use of compact or specialized bearing designs. Additionally, certain applications may demand high load-carrying capacity within a restricted envelope, necessitating careful bearing selection and possibly the use of alternative bearing types. It is important to consider the space limitations and select bearings that can accommodate the specified requirements while fitting within the available space.

While rolling contact bearings offer numerous advantages, it is essential to be aware of the potential challenges and limitations associated with their use. By understanding these factors and taking appropriate measures, such as careful selection, proper maintenance, and adherence to installation guidelines, the performance and reliability of rolling contact bearings can be optimized in various industries and applications.

rolling contact bearing

Can you describe the various types of seals and shields used with rolling contact bearings for contamination prevention?

Various types of seals and shields are used with rolling contact bearings to prevent contamination and protect the bearing internals. Here’s a detailed description of the commonly used seals and shields:

  • Contact Seals:

Contact seals, also known as lip seals or radial seals, are designed to provide a barrier against contaminants while maintaining lubricant retention within the bearing. These seals consist of a flexible lip that makes contact with the inner or outer ring of the bearing. The lip is typically made of synthetic rubber or elastomeric material. Contact seals effectively prevent the entry of solid particles, liquids, and other contaminants into the bearing. They are suitable for applications with moderate operating speeds and rotational requirements where the sealing function takes priority over low friction.

  • Non-Contact Seals:

Non-contact seals, also known as labyrinth seals or gap seals, create a labyrinthine path that hinders the entry of contaminants into the bearing. These seals do not make physical contact with the bearing rings, resulting in lower friction and reduced heat generation compared to contact seals. Non-contact seals are typically constructed using metallic or non-metallic components with precise geometries to create a tortuous path for contaminants. They are suitable for high-speed applications and environments where low friction and minimal heat generation are important considerations.

  • Shields:

Shields, also referred to as metal shields or non-contact shields, provide a physical barrier between the rolling elements and the external environment. Shields are typically made of metal, such as steel, and are attached to the outer ring of the bearing. They cover a portion of the bearing’s circumference, leaving a small gap for the rolling elements to function. Shields offer effective protection against larger particles and prevent the direct contact of contaminants with the rolling elements. However, they do not provide a complete seal, allowing for limited air circulation and lubricant flow within the bearing.

  • Hybrid Seals:

Hybrid seals combine the advantages of contact seals and non-contact seals. These seals use a combination of contacting and non-contacting elements to provide enhanced protection against contamination. Hybrid seals are designed to reduce friction and heat generation while offering improved sealing performance compared to contact seals. They typically incorporate a non-contacting labyrinth or gap seal with additional contact elements, such as lip seals or brush seals, to provide a more effective barrier against contaminants.

  • Ingress Protection (IP) Ratings:

In addition to the specific seal and shield types, rolling contact bearings may also be assigned Ingress Protection (IP) ratings. IP ratings indicate the level of protection provided against solid particles, such as dust and dirt, as well as liquids, such as water and oil. The IP rating is typically represented by a two-digit number, where the first digit represents the level of protection against solid particles, and the second digit represents the level of protection against liquids. Higher IP ratings indicate greater protection against contaminants.

The selection of the appropriate seal or shield type depends on various factors, including the application requirements, operating conditions, contamination risks, and desired friction characteristics. Manufacturers typically provide information on the recommended sealing options for their bearing products, considering the specific application needs and environmental conditions.

rolling contact bearing

What are rolling contact bearings, and how are they utilized in mechanical systems?

Rolling contact bearings are mechanical components used to facilitate smooth and efficient motion between two or more parts in a mechanical system. They utilize rolling elements, such as balls or rollers, to minimize friction and enable relative motion between the rotating or moving parts. Here’s a detailed explanation of rolling contact bearings and their utilization in mechanical systems:

  • Definition and Construction:

Rolling contact bearings consist of an inner ring, an outer ring, rolling elements (balls or rollers), and a cage or retainer that holds the rolling elements in position. The inner and outer rings have raceways, which are carefully machined surfaces that guide the rolling elements. The rolling elements roll between the raceways, reducing friction and enabling smooth rotation or linear motion.

  • Types of Rolling Contact Bearings:

There are various types of rolling contact bearings, including:

  • Ball Bearings: These bearings use spherical balls as rolling elements and are suitable for applications with light to moderate loads and high-speed requirements. Ball bearings are commonly used in motors, fans, household appliances, and automotive applications.
  • Roller Bearings: Roller bearings use cylindrical or tapered rollers as rolling elements. They can handle higher loads and provide better shock absorption than ball bearings. Roller bearings are often found in heavy machinery, construction equipment, and industrial applications.
  • Needle Bearings: Needle bearings are a type of roller bearing with long, thin rollers. They have a high load capacity and are used in applications where space is limited and high radial load support is required.
  • Thrust Bearings: Thrust bearings are designed to support axial loads and allow for rotational or linear motion in the axial direction. They are commonly used in automotive transmissions, machine tools, and thrust applications.
  • Tapered Roller Bearings: Tapered roller bearings have conical rollers and are designed to handle both radial and axial loads. They are commonly used in wheel bearings, gearboxes, and heavy-duty applications.
  • Utilization in Mechanical Systems:

Rolling contact bearings are utilized in various mechanical systems for several reasons:

  • Reduced Friction: By utilizing rolling elements, rolling contact bearings minimize friction compared to sliding contact bearings. This reduces energy losses, heat generation, and wear, resulting in improved efficiency and extended service life of the mechanical system.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. They allow for low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, reducing stress concentrations and preventing premature wear or failure. This enables mechanical systems to handle various loads and forces without compromising performance.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials to suit a wide range of applications. They can accommodate different load capacities, speeds, and environmental conditions, making them adaptable and versatile in various mechanical systems.

In summary, rolling contact bearings are essential components in mechanical systems. They utilize rolling elements to minimize friction, enable smooth motion, distribute loads, and provide positional accuracy. By utilizing rolling contact bearings, mechanical systems can achieve efficient and reliable operation in a wide range of applications, from small appliances to heavy machinery and industrial equipment.

China Professional All Series Bearings Needle Roller Thrust Cylindrical Pillow Block Ball Deep Groove Ball Auto Angular Contact Tapered Roller Spherical Rolling Bearing   with Hot sellingChina Professional All Series Bearings Needle Roller Thrust Cylindrical Pillow Block Ball Deep Groove Ball Auto Angular Contact Tapered Roller Spherical Rolling Bearing   with Hot selling
editor by CX 2024-05-06

China Best Sales China Best Price Natb 5903 Combined Needle Roller Angular Contact Ball Bearing Na4906 wheel bearing

Product Description

Welcome to HangZhou XIHU (WEST LAKE) DIS. FLIGHT SEIKO MACHINERY CO.,LTD !
We offer a wide variety of precision machining capabilities including high quality precision machined parts,
Mechanical assemblies,and cutom fabrication for automobile,textile machinery,construction machinery etc.
Our manufacturing and process capabilities are ISO9000 Certified.
 

Heavy duty needle roller bearing is composed of 1 or 2 rings and needle roller group with cage. According to different applications, it can be divided into bearings with or without inner rings. Therefore, the solid ring needle roller bearing can meet the requirements of light weight, small space occupation and high power transmission. The solid ring needle roller bearing has smaller volume and higher bearing capacity. Structure type outer ring double rib (or double lock ring) with cage needle roller bearing Na, NAV, NKI type can be respectively installed with inner ring and outer ring (with lock ring, full set of needle roller and cage), with high authorized speed, which can be divided into single row and double row. If the shaft cannot be used as a raceway, i.e. if it is not possible or economical to grind the shaft for hardening, this type of needle roller bearing with inner ring can be used

 

Characteristic of heavy duty needle roller bearing

Designation

Shaft

Mass

Dimensions(mm)

Basic Load Ratings

Limiting

P.No.

Diameter

 

FW

D

C

r

Cr

Cor

Speed

 

mm

g

 

 

 

Min.

Kn

Kn

rpm

NK 5/10TN

5

3.1

5

10

10

0.15

2.5

2

37000

NK 6/10TN

6

4.7

6

12

10

0.15

2.33

2.2

33000

NK 6/12TN

6

5.7

6

12

12

0.15

3.3

3.45

33000

NK 7/10TN

7

6.9

7

14

10

0.3

3.33

3.15

31000

NK 8/12TN

8

8.7

8

15

12

0.3

4.1

4.3

29000

NK 9/12TN

9

10.3

9

16

12

0.3

4.75

5.3

28000

Custom size requirement are also available

 

Our advantage:
1.The original 100% factory, more than 10 years’ production experience
2.Produce and process products according to your drawings and requirement.
3.All kinds of surface treatment available,such as anodizing,power coating,painting,polishing and etc.
4.Our professional R&D and QC team can strictily control the product quality to meet your requirement.
5.Our products are of high quality at cheap price,and delivered on time.
 

Manufacturing strength & Vehicle processing line

1.Professional operators

2.Adopting advanced CNC machine tools in Japan

3.Totally enclosed production workshop

4.Experienced managers

5.Digital control production line

6.Advanced level of technology

 

 

Production Detection

1.Complete testing facilities

2.Perfect measurement methods

3.Perfect production detection methods

4.Strong QC team,conduct comprehensive quality control
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Transport Package: Carton
Specification: customized
Trademark: oem
Origin: China
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

China Best Sales China Best Price Natb 5903 Combined Needle Roller Angular Contact Ball Bearing Na4906   wheel bearingChina Best Sales China Best Price Natb 5903 Combined Needle Roller Angular Contact Ball Bearing Na4906   wheel bearing
editor by CX 2024-05-03

China Custom 29476e 29376e 29276e Spherical Roller Thrust Bearing Angular Contact Ball Bearing wheel bearing

Product Description

29476e 29376e 29276e Spherical Roller Thrust Bearing Angular Contact Ball Bearing

Product Description

Spherical roller thrust bearing

 

Spherical roller thrust bearings are of spherical shape, and the spherical raceway surface of the housing washer is seIf-aIigned.These bearings are featured by the extremely big axial Ioad carrying capacity and meanwhiIe they can aIso carry certain radiaIIoad.OiIIubricant is comnonIy used while working.
AppIications of these bearings can be found in hydroelectric generators, verticaI motors,propeller axIe of vessels, tower cranes and squeezing presses.

Company Profile

HangZhou HONGSHI MACHINERY AND ELECTRICAL EQUIPMENT CO.,LTD. (formerly HangZhou Hengmai Bearing Co., Ltd.) was established in 2007, and HMMH is our own brand.
HMMH mainly produces spherical roller bearings, pillow block ball bearing, deep groove ball bearings and cylindrical roller bearings. Spherical roller bearing products range from 20mm to 1M, with the main production of crusher bearings 22300 series. Low noise deep groove ball bearings, product accuracy can reach ZV2, ZV3, ZV4, mainly produces motor bearings 6200, 6300 series. pillow block ball bearing, mainly producing UCP, UCF, UCFL, UCFC, UCT series, the products are mainly used in agricultural machine and peeling machine. We also use the bainite quenching process to ensure the hardness of the bearing, using good testing equipment, such as roundness meter, profiler, roughness meter, universal measuring instrument, spectrometer, metallographic microscope to control each detail quality monitoring.

To ensure product quality, we have established a strict quality control system and an experienced team of engineers and after-sales service. From forgings to final products  we have a strict quality control system.

Your needs are our production motivation, and your satisfaction is our goal. We are willing to serve our customers with the goal of “Quality First, Service First, Credit First”.

FAQ

1.A:How can I do customized design?
   Q:We are request for the drawing with the measurement, material and other speicifcation as details as you can, and for the customized products, our MOQ is 10 pcs per design

2.Q: How can I get a sample?
   A: If you only need 1or 2 samples for small size inner weight below 2kgs, we can supply free samples and we have stocks, you can just pay the shipping cost .if you need several design samples, then you should paid the cost with shipping.

3.Q: What package do you usually use?
   A: Usually we use single box or tape. Also according to customer’s special requirement.

4.Q:How long do you need for production? Or what’s your production lead time?
   A:Usually could be sent our in 2-3 days if in stock for samples. Customized item usually need 14-30 days to produce.

5.Q:How long will you guarantee your quality?
   A:We supply test report and quality control photos from materials to finished goods during production.
 
6.Q:How to do after sale service?
   A:Good after-sale service is our promise. Before placing orders, our professional engineer will discuss all technical data and your bearing usage condition and CZPT you what kind of steel materials to fit your products and usage life possible.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Axial Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

China Custom 29476e 29376e 29276e Spherical Roller Thrust Bearing Angular Contact Ball Bearing   wheel bearingChina Custom 29476e 29376e 29276e Spherical Roller Thrust Bearing Angular Contact Ball Bearing   wheel bearing
editor by CX 2024-05-03

China best Sg055aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings deep groove ball bearing

Product Description

KAA  opening  type  4.762mm(CP0/XP0/AR0

KAA571,KAA015,KAA017

KA  opening  type 6.35mm(CP0/XP0/AR0

KA571,KA571,KA030,KA035,KA040,KA042,

KA045,KA050,KA055,KA060,KA065,KA070,

KA075,KA080,KA090,KA100,KA110,KA120,

KA140,KA180,KA200

KB  opening  type 7.938mm(CP0/XP0/AR0

KB571,KB571,KB030,KB035,KB040,KB042,

KB045,KB050,KB055,KB060,KB065,KB070,

KB075,KB080,KB090,KB100,KB110,KB120,

KB140,KB180,KB200

KC opening  9.525mm(CP0/XP0/AR0

KC040,KC042,KC045,KC050,KC055,KC060,

KC065,KC070,KC075,KC080,KC090,KC100,

KC110,KC120,KC140,KC180,KC200

KD   opening   type 12.7mm(CP0/XP0/AR0

KD040,KD042,KD045,KD050,KD055,KD060,

KD065,KD070,KD075,KD080,KD090,KD100,

KD110,KD120,KD140,KD180,KD200

KF  opening  type  19.05mm(CP0/XP0/AR0

KF040,KF042,KF045,KF050,KF055,KF060,

KF065,KF070,KF075,KF080,KF090,KF100,

KF110,KF120,KF140,KF180,KF200

KG  open  25.4mm(CP0/XP0/AR0

KG040,KG042,KG045,KG050,KG055,

KG060,KG065,KG070,KG075,KG080,

KG090,KG100,KG110,KG120,KG140,

KG180,KG200,KG250,KG300,KG400

JA   seals 6.35mm(CP0/XP0/A

JHA571,JHA015,JA571,JA571,JA030,JA035,

JA040,JA042,JA045,JA050,JA055,JA060,JA065

JB  seals 7.938mm(CP0/XP0/AR

JB571,JB571,JB030,JB035,JB040,JB042,

JB045,JB050,JB055,JB060,JB065

JU  seals 12.7mm(CP0/XP0/AR

JU040,JU042,JU045,JU050,JU055,JU060,

JU065,JU070,JU075,JU080,JU090,JU100,

JU110,JU120

JG   seals  25.4mm(CP0/XP0/AR0

JG120,JG140,JG160,JG180

5mm-360mm   is  8mm,13mm,20mm

 thick 8mm    (CP0/XP0/

K57108,K05008,K06008,K07008,K08008,K09008,K10008,K11008,

K12008,K13008,K14008,K15008,K16008,K17008,K1K20008,K25008,K30008,K32008,K34008,K36  thick 13mm  open (CP0/XP0/

K57113,K05013,K06013,K 0571 3,K08013,K 0571 3,K10013,K11013,

K12013,K13013,K14013,K15013,K16013,K17013,K18013,K19013,

K20013,K25013,K30013,K32013,K34013,K36013

T20mm(CP0/XP0/

K571hinck  20,K 0571 1,K06571,K5711,K 0571 1,K09571,K1571,K11571,

K12571,K13571,K14571,K15571,K16571,K17571,K18571,K19571,

K2571,K25571,K3571,K32571,K34571,K36571

 thick 8mm   Seals (CP0/XP0/ARO

J57108,J05008,J06008,J07008,J08008,J09008,J10008,J11008,

J12008,J13008,J14008,J15008,J16008,J1700

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision: P0.P6.P5
Cage Material: Brass.Nylon Plastic Full Ball
Outer Ring: Chrome Steel
Inner Ring: Gcr15
Weight: 0.113kg
Structure: Xpo Aro Cpo

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

China best Sg055aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings   deep groove ball bearingChina best Sg055aro Chrome Steel CZPT Catalog Ultra Reali Slim Wall Roller Silverthin Ball Tapered Thrust Angular Contact Metric Sleeve Thin Section Bearings   deep groove ball bearing
editor by CX 2024-05-02

China manufacturer Crossed Cylindrical Roller Slewing Bearings 4 Point Angular Contact Ball Turntable Bearing bearing air

Product Description

Product Description

Product Description:

Type • Single Row Four Point Contact Ball Slewing Bearing 
• Single Row Crossed Cylindrical Roller Slewing Bearings
• Double Row Ball Slewing Bearings
•Double Row Roller/Ball Combination Slewing Bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Stainless Steel,Alu,Customized
Cage Material Nylon 1571/ Steel /Brass
Structure Taper pin , Mounting holes,Inner ring ,Grease fitting,Load plug, Seals , Roller ,Spacer Balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through Hole/Tapped hole/Counterbore
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , off shore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name SoCare-MSI
Place of Origin China
Warranty 18 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

Slewing ring bearings are large-size rolling bearings that can accommodate axial, radial and moment loads acting either singly or in combination and in any direction .They can perform both slewing (oscillating) movements as well as rotational movements. A slewing ring bearing consist of an inner ring, an outer ring and rolling elements (balls or cylindrical rollers) that are separated by polyamide spacers .The rings, 1 of which usually incorporates a gear ,are provided with holes to accommodate attachment bolts. The holes may be threaded. Generally , only the raceways in the rings are hardened and precision-ground.Integral seals made of acrylonitrile-butadiene rubber (NBR) keep the lubricant in, and contaminants out of the bearing. Slewing ring bearings are re-lubricated through grease fittings to reduce maintenance and operating costs.

Compared to traditional pivot arrangements, slewing ring bearing arrangements provide many design and performance advantages. The compactness and large inner diameter simplify the design of the bearing arrangement and its associated components .The low sectional height of these bearings means that the pinion lever can be kept short. In most cases only flat mounting surfaces on the associated components are needed.

Slewing ring bearings were originally designed to be mounted only on horizontal support structure, but can now be used successfully in vertical bearing arrangements .

Slewing ring bearings perform extremely well in a variety of applications such as:
¤ Access platforms
¤ Bucket wheel excavators
¤ Conveyor booms
¤ Cranes of all type
¤ Small ,medium and large excavators
¤ InHangZhou tables
¤ Ladle turrets
¤ Offshore applications
¤ Robots
¤ Railway bogies
¤ Rotary platforms
¤ Stackers
¤ Solar mirrors
¤ Tunnel boring machines
¤ Wind turbines

Introduction

SCB-XR cross roller bearings

Provides higher level of stiffness while not increasing rotational torque

OD size range up : 11″-209″

Construction

-Cylindrical rollers in V shaped rolling path

-Rollers in alternating axis of roation

-Sealed

-Ring Configuration:

Non geared

External gear

Internal gear

-Grease fittings for lubrication

Applications

-Robotics

-Military

-Machine tools

-Radar

-Satellite

Company Profile

Company  Profile:

                              About SoCare :
The SoCare  brand is synonymous with quality.
Now, we have become an even greater resource for our business partners. Due to embracing technical advances, product support, and service, we have become a truly solutions-oriented supplier.

SoCare  is creating greater value for our partners.

These advances all work together to bring our customers the added benefit of higher productivity. In addition, we provide application specific products, leading edge design simulation tools, on sight engineering support, plant asset efficiency programs, and advanced supply chain management.
             With SoCare  you can expect more!

Application: 
Slewing ring bearings can be widely used in lifting & transport machinery, mining machinery, construction machinery, port hoisting machinery, port oil transfer equipment, onshore and offshore crane, excavator, concrete machine, paper machine, plastic and rubber machine, weave machine, steel plant, electronic power plant, wind power generator, other construction and industry machines or equipments and other large rotary device.

Packaging & Shipping

Packing & Shipping:

Bearing surface is covered with the anti-rust oil first; and then wrapped with the plastic film;

And then packed with kraft paper and professional belts;

At last, with wooden box totally at the outer packing to invoid the rust or the moist;

We can depend on the customers  demand to be packed.

 

After Sales Service

Our Service:
♥1.Your inquiry will be reply within 2 hours.

♥2.Fast delivery,within 15 working days.

♥3.Packing: you will receive a Perfect product with strong outside packing.

♥4.With advanced first-level facilities and testing equipment,to insure no mistake on the dimension of the bearings.

♥5.MOQ is 2 sets, Because we are manufacturer.

♥6.24 hours on line,no limited to talk to us.

♥7.Return Policy:We gladly accept returns for item purchased within a 15 day period, provided it is still in the original package, not used nor damaged.

♥8.Warranty Claims :The Warranty covers any Defect of the product for a period of 18 months. It does not cover items that are not correctly installed or over tightened which may cause premature failure. Installation or any other fee’s are not refundable.

FAQ

FAQ:

1.Q: Are you trading company or manufacturer ?
A: We are a manufacturing enterprise focusing on bearings and integrating research, production and sales with 20 years’ experience.

2.Q: How long is your delivery time?
A: Generally it is 7 days if the goods are in stock. or it is 15 days if the goods are not in stock, Also it is according to quantity.

3.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.

4.What are the company’s delivery terms?
A:We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.

5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.

6.How many the MOQ of your company?
A:Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

7.Does the company accept OEM or customized bearings?
A:In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

8.Can the company provide free samples?
A:We can provide samples for free. You only need to provide shipping.

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Spherical Raceway
Material: Alloy
Samples:
US$ 0/Set
1 Set(Min.Order)

|
Request Sample

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

China manufacturer Crossed Cylindrical Roller Slewing Bearings 4 Point Angular Contact Ball Turntable Bearing   bearing airChina manufacturer Crossed Cylindrical Roller Slewing Bearings 4 Point Angular Contact Ball Turntable Bearing   bearing air
editor by CX 2024-04-30