Tag Archives: double row ball bearing

China manufacturer China Factory Price Angular Contact Ball Bearings 3303A-2z 3303-2RS 3303atn9 Double Row 17X47X22.2mm Deep Groove Ball Bearing bearing distributors

Product Description

Angular Contact Ball Bearing

Basic Info. 

Model NO. GE 55 SX Separated Separated
MOQ 1PCS Quality Guaranteed
Mainly Market America Europe Asia Africa Serive OEM
Stock Rich Stocks Feature High Precision, Small Torque, Low Noise
Transport Package Industrial Packing or as Per Requirement Specification GE 55 SX
Trademark FOS Bearing or OEM Origin YANDIAN, ZheJiang
HS Code 8482200000 Production Capacity 7000PCS/Month

Angular Contact Ball Bearing

Knuckle-bearing is a spherical plain bearing, its sliding contact surface is an inner sphere and an outer sphere, which can rotate and swing at any Angle when moving, it is made of surface phosphating, blasting, insert pad, spraying and other special process processing methods. Joint bearing has the characteristics of large load capacity, impact resistance, corrosion resistance, wear resistance, self-aligning, good lubrication and so on.
Product  Serie
Angular Contact Ball Bearing

 

Production Process
Production Process

Inspection
Our Advantage

Package and shipment

Company Profile

HangZhou Siruibo Bearing Technology Co., Ltd. is a company mainly engaged in manufacturing and selling outer spherical bearings. The registered capital is Five million.

Since its establishment 20 years ago, the company is committed to Mounted Bearing Unit (maintenance-free bearings, engraving machine bearings, holding machine shaft Bearing, no-tillage machine bearing, fan bearing, high temperature bearing, zinc alloy bearing, food grade bearing unit) research and development. With the most complete varieties and best advanced manufacturing technology in production of Mounted Bearing Unit, to be a reliable enterprises, we welcome your cooperation.  Currently, our company produce 10 series of more than 260 varieties of outer spherical bearings and 13 different structural categories of outer spherical bearing special seats, all adopted  International standard design and manufacturing. Registered trademark “FOS” .

Through the efforts and unremitting pursuit of all employees of the company, all products accepted by international standards. Over the years of Expansion and technical transformation, we developed into a Mounted Bearing Unit with large scale of professional manufacturers, for the bearing industry in China, has made a contribution to the development of Bearing.

HangZhou Siruibo Bearing Technology Co., Ltd. has a production capacity of 1 million sets/year, with an annual output value of 30 million yuan. We produce 30 varieties monthly , with 45-60 days lead time.

The company has a perfect material and product quality inspection equipment, according to the strict scientific Quality assurance system,  to prove satisfactory to our customers.  Our products widely used in agricultural Industry machinery, textile machinery and light industry, chemical industry, metallurgy, printing, food, transportation, coal, packaging and other industries and the introduction of machinery .Our products have exported to Europe, America and many countries and regions in South east Asia.

Exhibitions

About us:
We are 1 manufactuer of bearing for more than 20 years.
Give us a chance, we will cooperate with our passion.
Our professional, reliable, experienced  products and service can meet your request.
Why choose us? 

SAMPLES
1. Samples quantity: 1-10 PCS are available. 
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost. 
3. It’s better to start your order with Trade Assurance to get full protection for your samples order. 

CUSTOMIZED
The customized LOGO or drawing is acceptable for us. 

MOQ
1. MOQ: 10 PCS mix different standard bearings. 
2. MOQ: 3000 PCS customized your brand bearings. 

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield. 
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info. 

SUPORT
Please visit our bearings website, we strongly encourge that you can communicate with us through email, thanks! 
We have all kinds of bearings, just tell me your item number and quantity, best price will be offered to you soon
The material of the bearings, precision rating, seals type, OEM service, etc, all of them we can make according to your requirement. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China manufacturer China Factory Price Angular Contact Ball Bearings 3303A-2z 3303-2RS 3303atn9 Double Row 17X47X22.2mm Deep Groove Ball Bearing   bearing distributorsChina manufacturer China Factory Price Angular Contact Ball Bearings 3303A-2z 3303-2RS 3303atn9 Double Row 17X47X22.2mm Deep Groove Ball Bearing   bearing distributors
editor by CX 2024-05-17

China factory Double Row Angular Contact Ball Bearings 5204 5205 5206 5207 bearing assembly

Product Description

Bearing Cheap bearings for sale Spherical Roller Bearing Cylindrical Roller Bearing 7012 Angular Contact Ball Bearing

China angular contact ball bearing parameters:
 

Product Name Angular contact ball Bearing 7012
 
Material Chrome Steel, GCR15, Stainless steel, Ceramic
Type Single row Angular contact ball bearing
Double row Angular contact ball bearing
Size d:3-110mm,D:9-240mm
Precision PO,P6,P5,P4,P2
Cage Steel Cage,copper Cage,nylon Cage,brass cage
Used For Machine tool spindle, high frequency motor, gas turbine, centrifugal separator, small car front wheel, differential pinion shaft, booster pump, drilling platform, food machinery, dividing head, repair welding machine, low noise cooling tower, electrocute canonical equipment, coating equipment, machine tool slot plate, arc welding machine, Oil pump, roots blower, air compressor, various transmissions, fuel injection pump, printing machinery, planetary reducer, extraction equipment, cyclonic reducer, food packaging machinery, electric welding machine, electric soldering iron, square box, gravity spray gun, wire stripper, half shaft, inspection and analysis equipment, fine chemical machinery
Warranty 1 year
Brand OEM
Packing According to the buyer requests for packaging

Product Applications

 

Our Factory

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Standard
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

China factory Double Row Angular Contact Ball Bearings 5204 5205 5206 5207   bearing assemblyChina factory Double Row Angular Contact Ball Bearings 5204 5205 5206 5207   bearing assembly
editor by CX 2024-05-15

China supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane double row ball bearing

Product Description

Slew Gear 061.20.571.100.11.1503 Four Point Contact Ball Bearing For JIB Crane

Four-point contact ball slewing turntable bearings
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing CZPT to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Customization:
Available

|

Customized Request

rolling contact bearing

Can you explain the installation and alignment considerations for rolling contact bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of rolling contact bearings. Incorrect installation or misalignment can lead to premature wear, increased friction, reduced load-carrying capacity, and potential bearing failure. Here’s a detailed explanation of the installation and alignment considerations for rolling contact bearings:

  • Clean and Proper Workspace:

Before installing rolling contact bearings, it is essential to ensure a clean and suitable workspace. The work area should be free from dirt, dust, debris, and contaminants that could enter the bearing during installation. Contamination can cause damage to the bearing surfaces and compromise its performance. Additionally, the workspace should have appropriate tools and equipment to facilitate the installation process, including bearing pullers, mounting tools, and measurement instruments.

  • Handling and Storage:

Rolling contact bearings should be handled with care to prevent damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from moisture, dust, and extreme temperatures. During handling, it is important to avoid dropping or impacting the bearings, as this can cause surface damage or internal defects. Proper handling and storage practices help maintain the integrity of the bearings and ensure their performance during installation.

  • Shaft and Housing Preparation:

Prior to installing the rolling contact bearings, the shaft and housing surfaces must be prepared appropriately. The shaft and housing should be clean, free from burrs, and have the correct dimensions and tolerances specified by the bearing manufacturer. Any roughness or irregularities on the shaft or housing can affect the fit and alignment of the bearing, leading to performance issues. It may be necessary to use appropriate tools, such as emery cloth or a deburring tool, to smooth the surfaces and ensure proper fitment.

  • Bearing Mounting:

When mounting rolling contact bearings, it is essential to follow the manufacturer’s recommended procedures and guidelines. This includes using the appropriate mounting tools and techniques to apply the necessary axial or radial force evenly during installation. Overloading or uneven force application can lead to bearing damage or misalignment. Proper mounting techniques may involve using a press, heat, or specialized mounting tools to ensure the bearing is seated securely and accurately on the shaft or in the housing.

  • Alignment:

Accurate alignment of rolling contact bearings is critical for their optimal performance. Misalignment can cause increased friction, premature wear, and reduced load-carrying capacity. It is important to align the bearing with respect to the shaft and housing to ensure proper concentricity and parallelism. Alignment methods may include visual alignment, feeler gauges, dial indicators, laser alignment systems, or other precision alignment tools. The specific alignment requirements may vary depending on the bearing type, application, and manufacturer recommendations.

  • Lubrication:

Proper lubrication is essential during the installation of rolling contact bearings. The bearing manufacturer’s recommendations should be followed regarding the type, quantity, and method of lubrication. Lubrication helps reduce friction, dissipate heat, and protect against wear and corrosion. It is important to ensure that the bearing is adequately lubricated during installation to facilitate smooth operation and prevent damage.

  • Verification and Testing:

After installation, it is recommended to verify the proper fitment, alignment, and operation of the rolling contact bearings. This may involve checking the axial and radial clearances, measuring runout, and performing functional tests to ensure smooth rotation and proper load distribution. Verification and testing help confirm the successful installation and identify any potential issues that may require adjustment or corrective action.

In summary, proper installation and alignment considerations are essential for the optimal performance and longevity of rolling contact bearings. Following recommended procedures, handling the bearings carefully, preparing the shaft and housing surfaces, ensuring accurate alignment, and providing appropriate lubrication contribute to the successful installation and reliable operation of rolling contact bearings in various applications.

rolling contact bearing

Can you provide guidance on the selection and sizing of rolling contact bearings for specific applications?

Yes, I can provide guidance on the selection and sizing of rolling contact bearings for specific applications. Choosing the right rolling contact bearings involves considering various factors such as load requirements, operating conditions, speed, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing rolling contact bearings:

  1. Identify Application Requirements:

Start by identifying the specific requirements of your application. Consider factors such as the type and magnitude of the loads the bearing will be subjected to, the operating speed, and any special environmental conditions like temperature, moisture, or exposure to corrosive substances. Understanding these requirements is crucial as it forms the basis for selecting the appropriate rolling contact bearing.

  1. Analyze Load Conditions:

Next, analyze the load conditions acting on the bearing. Determine if the load is radial, axial, or a combination of both. Consider factors such as the magnitude, direction, and frequency of the load. This analysis helps in determining the appropriate bearing type, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, or tapered roller bearings, that can handle the specific load conditions effectively.

  1. Calculate Equivalent Load:

Calculate the equivalent load acting on the bearing. In cases where the load acting on the bearing is a combination of radial and axial loads, it is necessary to calculate the equivalent load. The equivalent load accounts for the differing effects of radial and axial loads on the bearing and helps in determining the required bearing size and capacity.

  1. Consider Speed and Operating Conditions:

Take into account the speed at which the bearing will operate and the specific operating conditions. Higher speeds may require bearings with special design features or materials to handle the increased centrifugal forces and temperature rise. Consider factors such as lubrication requirements, temperature limits, and any special considerations for factors like shock loads, vibrations, or misalignment. These factors influence the selection of appropriate bearing types and configurations.

  1. Consult Bearing Manufacturer’s Catalogs:

Refer to the catalogs or technical specifications provided by bearing manufacturers. These catalogs contain detailed information about various bearing types, sizes, load ratings, and performance characteristics. Use the information provided to narrow down the options based on your application requirements and load calculations.

  1. Verify Bearing Life:

Check the calculated bearing life to ensure it meets the required operational lifespan of your application. Bearing manufacturers provide life calculation formulas based on industry standards such as ISO or ABMA. These formulas take into account factors like load, speed, and reliability requirements to estimate the expected bearing life. Verify that the selected bearing will provide the desired operational lifespan under the given operating conditions.

  1. Consider Mounting and Dismounting:

Lastly, consider the ease of mounting and dismounting the bearing in your specific application. Evaluate factors such as the bearing’s fit tolerance, the required clearance or preload, and any special mounting or dismounting procedures. Ensure that the selected bearing can be easily installed and maintained in your application.

It is important to note that the selection and sizing of rolling contact bearings can be complex, and it is advisable to seek the assistance of bearing manufacturers, engineers, or experts in the field to ensure the optimal selection for your specific application.

rolling contact bearing

What are rolling contact bearings, and how are they utilized in mechanical systems?

Rolling contact bearings are mechanical components used to facilitate smooth and efficient motion between two or more parts in a mechanical system. They utilize rolling elements, such as balls or rollers, to minimize friction and enable relative motion between the rotating or moving parts. Here’s a detailed explanation of rolling contact bearings and their utilization in mechanical systems:

  • Definition and Construction:

Rolling contact bearings consist of an inner ring, an outer ring, rolling elements (balls or rollers), and a cage or retainer that holds the rolling elements in position. The inner and outer rings have raceways, which are carefully machined surfaces that guide the rolling elements. The rolling elements roll between the raceways, reducing friction and enabling smooth rotation or linear motion.

  • Types of Rolling Contact Bearings:

There are various types of rolling contact bearings, including:

  • Ball Bearings: These bearings use spherical balls as rolling elements and are suitable for applications with light to moderate loads and high-speed requirements. Ball bearings are commonly used in motors, fans, household appliances, and automotive applications.
  • Roller Bearings: Roller bearings use cylindrical or tapered rollers as rolling elements. They can handle higher loads and provide better shock absorption than ball bearings. Roller bearings are often found in heavy machinery, construction equipment, and industrial applications.
  • Needle Bearings: Needle bearings are a type of roller bearing with long, thin rollers. They have a high load capacity and are used in applications where space is limited and high radial load support is required.
  • Thrust Bearings: Thrust bearings are designed to support axial loads and allow for rotational or linear motion in the axial direction. They are commonly used in automotive transmissions, machine tools, and thrust applications.
  • Tapered Roller Bearings: Tapered roller bearings have conical rollers and are designed to handle both radial and axial loads. They are commonly used in wheel bearings, gearboxes, and heavy-duty applications.
  • Utilization in Mechanical Systems:

Rolling contact bearings are utilized in various mechanical systems for several reasons:

  • Reduced Friction: By utilizing rolling elements, rolling contact bearings minimize friction compared to sliding contact bearings. This reduces energy losses, heat generation, and wear, resulting in improved efficiency and extended service life of the mechanical system.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. They allow for low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, reducing stress concentrations and preventing premature wear or failure. This enables mechanical systems to handle various loads and forces without compromising performance.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials to suit a wide range of applications. They can accommodate different load capacities, speeds, and environmental conditions, making them adaptable and versatile in various mechanical systems.

In summary, rolling contact bearings are essential components in mechanical systems. They utilize rolling elements to minimize friction, enable smooth motion, distribute loads, and provide positional accuracy. By utilizing rolling contact bearings, mechanical systems can achieve efficient and reliable operation in a wide range of applications, from small appliances to heavy machinery and industrial equipment.

China supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane   double row ball bearingChina supplier Slew Gear 061.20.0710.100.11.1503 Four Point Contact Ball Bearing for Jib Crane   double row ball bearing
editor by CX 2024-05-08

China wholesaler Slewing Bearing 023.40.1800 022.40.1800 024.40.1800 Double Row Angular Contact Ball Slewing Bearings Slewing Bearing Crane bearing bronze

Product Description

 

Product Description

The double row ball slewing bearing has 3 seat rings , the steel ball and the spaces can be directly arranged into the upper and lower races. Two rows of steel balls are fitted according to the force born . Open mode fitting is extraordinary convenient .The load angles of both upper and lower race are 90°,which enable to bear large axial force and the tilting moment.

As the axial and radial dimension of the double row ball slewing bearing are rather large , structural is tightening and can support high static loads. They are mainly used in situations with variational load position and direction and continuously rotating . Especially suitable for tower cranes which require working radius over medium range , mobile crane and loading and unloading machinery .

Product Parameters

Different dia product specification

Model Boundary dimensions(mm) Bolt hole diameter(mm) Structure dimensions(mm) Gear parameters(mm) Basic load ratings Mass
Non-gear External gear Internal gear H D1  D2  n <p  D3 (D d1 (dT) H1 h n3 φ3  m Da Z  da Z b X Coa 104N kg
571-25-500 571-25-500 571-25-500 616 384 106 580 420 20 18 523 518 96 26 4 M10x1 5 645 126 355 72 60 0.5 121 100
  571-25-500 571-25-500 616 384 106 580 420 20 18 523 518 96 26 4 M10x1 6 648 105 348 59 60 0.5 121 100
571-25-560 571-25-560 571-25-560 676 444 106 640 480 20 18 583 577 96 26 4 M10x1 5 705 138 415 84 60 0.5 134 115
  571-25-560 571-25-560 676 444 106 640 480 20 18 583 577 96 26 4 M10x1 6 708 115 408 69 60 0.5 134 115
571-25-630 571-25-630 571-25-630 746 514 106 710 550 24 18 653 647 96 26 4 M10x1 6 792 129 480 81 60 0.5 153 130
  571-25-630 571-25-630 746 514 106 710 550 24 18 653 647 96 26 4 M10x1 8 792 96 472 60 60 0.5 153 130
571-25-710 571-25-710 571-25-710 826 594 106 790 630 24 18 733 728 96 26 4 M10x1 6 864 141 558 94 60 0.5 173 140
  571-25-710 571-25-710 826 594 106 790 630 24 18 733 728 96 26 4 M10x1 8 864 105 552 70 60 0.5 173 140
571-30-800 571-30-800 571-30-800 942 658 124 898 702 30 22 829 823 114 29 6 M10x1 8 984 120 616 78 80 0.5 230 200
  571-30-800 571-30-800 942 658 124 898 702 30 22 829 823 114 29 6 M10x1 10 990 96 610 62 80 0.5 230 200
571-30-900 571-30-900 571-30-900 1042 758 124 998 802 30 22 929 923 114 29 6 M10x1 8 1088 133 712 90 80 0.5 258 250
  571-30-900 571-30-900 1042 758 124 998 802 30 22 929 923 114 29 6 M10x1 10 1090 106 710 72 80 0.5 258 250
571-30-1000 571-30-1000 571-30-1000 1142 858 124 1098 902 36 22 1571 1571 114 29 6 M10x1 10 1200 117 810 82 80 0.5 286 300
  571-30-1000 571-30-1000 1142 858 124 1098 902 36 22 1571 1571 114 29 6 M10x1 12 1200 97 792 67 80 0.5 286 300
571-30-1120 571-30-1120 571-30-1120 1262 978 124 1218 1571 36 22 1148 1143 114 29 6 M10x1 10 1320 129 920 93 80 0.5 321 340
  571-30-1120 571-30-1120 1262 978 124 1218 1571 36 22 1148 1143 114 29 6 M10x1 12 1320 107 912 77 80 0.5 321 340
571-40-1250 571-40-1250 571-40-1250 1426 1074 160 1374 1126 40 26 1286 1282 150 39 6 M10x1 12 1500 122 1008 85 90 0.5 482 580
  571-40-1250 571-40-1250 1426 1074 160 1374 1126 40 26 1286 1282 150 39 6 M10x1 14 1498 104 1008 73 90 0.5 482 580
571-40-1400 571-40-1400 571-40-1400 1576 1224 160 1524 1272 40 26 1436 1432 150 39 6 M10x1 12 1644 134 1152 97 90 0.5 543 650
  571-40-1400 571-40-1400 1576 1224 160 1524 1272 40 26 1436 1432 150 39 6 M10x1 14 1652 115 1148 83 90 0.5 543 650
571-40-1600 571-40-1600 571-40-1600 1776 1424 160 1724 1476 45 26 1636 1632 150 39 8 M10x1 14 1848 129 1344 97 90 0.5 620 750
  571-40-1600 571-40-1600 1776 1424 160 1724 1476 45 26 1636 1632 150 39 8 M10x1 16 1856 113 1344 85 90 0.5 620 750
571-40-1800 571-40-1800 571-40-1800 1976 1624 160 1924 1676 45 26 1836 1832 150 39 8 M10x1 14 2058 144 1540 111 90 0.5 692 820
  571-40-1800 571-40-1800 1976 1624 160 1924 1676 45 26 1836 1832 150 39 8 M10x1 16 2064 126 1536 97 90 0.5 692 820
571-50-2000 571-50-2000 571-50-2000 2215 1785 190 2149 1851 48 33 2038 2032 178 47 8 M10x1 16 2304 141 1696 107 120 0.5 987 1150
  571-50-2000 571-50-2000 2215 1785 190 2149 1851 48 33 2038 2032 178 47 8 M10x1 18 2304 125 1692 95 120 0.5 987 1150
571-50-2240 571-50-2240 571-50-2240 2455 2571 190 2389 2091 48 33 2278 2272 178 47 8 M10x1 16 2544 156 1936 122 120 0.5 1110 1500
  571-50-2240 571-50-2240 2455 2571 190 2389 2091 48 33 2278 2272 178 47 8 M10x1 18 2556 139 1926 108 120 0.5 1110 1500
571-50-2500 571-50-2500 571-50-2500 2715 2285 190 2649 2351 56 33 2538 2532 178 47 8 M10x1 18 2804 153 2196 123 120 0.5 1110 1500
  571-50-2500 571-50-2500 2715 2285 190 2649 2351 56 33 2538 2532 178 47 8 M10x1 20 2820 138 2180 110 120 0.5 1110 1500
571-50-2800 571-50-2800 571-50-2800 3015 2585 190 2949 2651 56 33 2838 2832 178 47 8 M10x1 18 3114 170 2484 139 120 0.5 1390 1900
  571-50-2800 571-50-2800 3015 2585 190 2949 2651 56 33 2838 2832 178 47 8 M10x1 20 3120 153 2480 125 120 0.5 1390 1900
571-60-3150 571-60-3150 571-60-3150 3428 2872 226 3338 2962 56 45 3198 3192 214 56 8 M10x1 20 3540 174 2760 139 150 0.5 1870 3300
  571-60-3150 571-60-3150 3428 2872 226 3338 2962 56 45 3198 3192 214 56 8 M10x1 22 3542 158 2750 126 150 0.5 1870 3300
571-60-3550 571-60-3550 571-60-3550 3828 3272 226 3738 3362 56 45 3598 3592 214 56 8 M10x1 20 3940 194 3160 159 150 0.5 2110 3700
  571-60-3550 571-60-3550 3828 3272 226 3738 3362 56 45 3598 3592 214 56 8 M10x1 22 3938 176 3168 145 150 0.5 2110 3700
571-60-4000 571-60-4000 571-60-4000 4278 3722 226 4188 3812 60 45 4048 4042 214 56 10 M10x1 22 4400 197 3608 165 150 0.5 2370 4200
  571-60-4000 571-60-4000 4278 3722 226 4188 3812 60 45 4048 4042 214 56 10 M10x1 25 4400 173 3600 145 150 0.5 2370 4200
571-60-4500 571-60-4500 571-60-4500 4778 4222 226 4688 4312 60 45 4548 4542 214 56 10 M10x1 22 4884 219 4114 188 150 0.5 2670 4700
  571-60-4500 571-60-4500 4778 4222 226 4688 4312 60 45 4548 4542 214 56 10 M10x1 25 4900 193 4100 165 150 0.5 2670 4700

Same dia product specification
Internal and external gera

Designations Gear parameters External gear parameters Internal gear parameters Weight (kg)
External gear Internal gear b m da Z da Z
031.25.560 033.25.560 60 5 704 138 417 84 156
032.25.560 034.25.560 60 6 706.8 115 410.4 69  
031.25.630 033.25.630 60 6 790.8 129 482.4 81 175
032.25.630 034.25.630 60 8 790.4 96 475.2 60  
031.25.710 033.25.710 60 6 862.8 141 560.4 94 198
032.25.710 034.25.710 60 8 862.4 105 555.2 70  
031.30.800 033.30.800 80 8 982.4 120 619.2 78 324
032.30.900 034.30.900 80 10 1088 106 714 72  
031.30.1000 033.30.1000 80 10 1198 117 814 82 405
032.30.1000 034.30.1000 80 12 1197.6 97 796.8 67  
031.30.1120 033.30.1120 80 10 1318 129 924 93 455
032.30.1120 034.30.1120 80 12 1317.6 107 916.8 77  
031.40.1250 033.40.1250 90 12 1497.6 122 1012.8 85 837
032.40.1250 034.40.1250 90 14 1495.2 104 1013.6 73  
031.40.1400 033.40.1400 90 12 1641.6 134 1156.8 97 940
032.40.1400 034.40.1400 90 14 1649.2 115 1153.6 83  
031.40.1600 033.40.1600 90 14 1845.2 129 1349.6 97 1075
032.40.1600 034.40.1600 90 16 1852.8 113 1350.4 85  
031.40.1800 033.40.1800 90 14 2055.2 144 1545.6 111 1213
032.40.1800 034.40.1800 90 16 2060.8 126 1542.4 97  
031.50.200 033.50.2000 120 16 2300.8 141 1702.4 107 1921
032.50.2000 034.50.2000 120 18 2300.4 125 1699.32 95  
031.50.2240 033.50.2240 120 16 2540.8 156 1942.4 122 2159
032.50.2240 034.50.2240 120 18 2552.4 139 1933.2 108  
031.50.2500 033.50.2500 120 18 2804.4 153 2203.2 123 2406
032.50.2500 034.50.2500 120 20 2816 138 2188 110  
031.50.2800 033.50.2800 120 18 3110.4 170 2491.2 139 3221
032.50.2800 034.50.2800 120 20 3116 153 2488 125  
031.60.3150 033.60.3150 150 20 3536 174 2768 139 4652
032.60.3150 034.60.3150 150 22 3537.6 158 2758.8 126  
031.60.3550 033.60.3550 150 20 3936 194 3168 159 5262
032.60.3550 034.60.3550 150 22 3933.6 176 3176.8 145  
031.60.4000 033.60.4000 150 22 4395.6 197 3616.8 165 5938
032.60.4000 034.60.4000 150 25 4395 173 3610 145  

No gear

Designations Dimension (mm)
Non-geartype D d T H h D1 d1 dn n n1
030.25.560 676 444 110 100 26 640 480 18 20 4
676 444 110 100 26 640 480 18 20 4
030.25.630 746 514 110 100 26 710 550 18 24 4
746 514 110 100 26 710 550 18 24 4
030.25.710 826 594 110 100 26 790 630 18 24 4
826 594 110 100 26 790 630 18 24 4
030.30.800 942 658 130 120 29 898 702 22 30 6
942 658 130 120 29 898 702 22 30 6
030.30.900 1042 758 130 120 29 998 802 22 30 6
1042 758 130 120 29 998 802 22 30 6
030.30.1000 1142 858 130 120 29 1098 902 22 36 6
1142 858 130 120 29 1098 902 22 36 6
030.30.1120 1262 978 130 120 29 1218 1571 22 36 6
1262 978 130 120 29 1218 1571 22 36 6
030.40.1250 1426 1074 170 160 39 1374 1126 26 40 5
1426 1074 170 160 39 1374 1126 26 40 5
030.40.1400 1576 1224 170 160 39 1524 1272 26 40 5
1576 1224 170 160 39 1524 1272 26 40 5
030.40.1600 1776 1424 170 160 39 1724 1476 26 45 5
1776 1424 170 160 39 1724 1476 26 45 5
030.40.1800 1976 1624 170 160 39 1924 1676 26 45 5
1976 1624 170 160 39 1924 1676 26 45 5
030.50.2000 2215 1785 200 188 47 2149 1851 33 48 8
2215 1785 200 188 47 2149 1851 33 48 8
030.50.2240 2455 2571 200 188 47 2389 2091 33 48 8
2455 2571 200 188 47 2389 2091 33 48 8
030.50.2500 2715 2285 200 188 47 2649 2351 33 56 8
2715 2285 200 188 47 2649 2351 33 56 8
030.50.2800 3015 2585 200 224 47 2949 2651 33 56 8
3015 2585 200 224 47 2949 2651 33 56 8
030.60.3150 3428 2872 240 224 56 3338 2962 45 56 8
3428 2872 240 224 56 3338 2962 45 56 8
030.60.3550 3828 3272 240 224 56 3738 3362 45 56 8
3828 3272 240 224 56 3738 3362 45 56 8
030.60.4000 4278 3722 240 224 56 4188 3812 45 60 8
4278 3722 240 224 56 4188 3812 45 60 8

Company Profile

HangZhou solarich machinery Co., Ltd. is a professional manufacturer of bearings, We can design and manufacture single-row ball slewing bearings, double-row ball slewing bearings, three-row roller slewing bearings, ball combination slewing bearings, crossed roller bearings, crossed tapered roller bearings Bearings, slewing drives and custom bearings.

Subordinate factories use high-quality chrome steel and stainless steel as raw materials, specializing in the design, development and manufacture of deep groove ball bearings, stainless steel bearings, stainless steel outer ball bearings , tapered bearings , cylindrical bearings, needle bearing , thrust bearing , bearing housing and non-standard bearings.

Adhering to the business philosophy of “Quality and Integrity”, we will continue to provide excellent bearings and high-quality services to serve global customers

Solutions

Playground Equipment

Slewing bearing can provide excellent performance experience and safety guarantee for amusement equipment, and the durability of slewing bearing is also the main concern of technical engineers. For more than 20 years, slewing bearing solutions have been used in many key applications of large amusement equipment. reflect.

We designed the cross-sectional area to remain the same as the raceway center distance increased, and the slewing ring achieves better dynamic capabilities with less mass.

Key advantages include:
* Lighter weight
* Save spaighter weightce
* Long life and lower maintenance costs
* Better stiffness
* Better lubrication in extreme conditions

Medical Device
With the comprehensive development of scientific and technological strength, the social economyu has been improved faster, and the medical equipment has also been comprehensively improved.

 

Mining & construction machinery

Mining machinery and heavy construction machinery industry uses a range of different types of highly specialized mobile machinery. . The places where mining machinery and construction machinery are active are mostly mining sites such as mountains and deserts that are far away from ordinary human life. These heavy machinery work in the harshest environments and require continuous low-friction work without reducing load capacity and minimum. assembly and adjustment time. Solving the bearing heating problem caused by the large exciting force, high vibration frequency and continuous operation of vibratory rollers for users has become the focus of the work. Mineral crushing machinery, cutting machinery, screening machinery, loading machinery, conveying machinery and other equipment in the use environment of bearings, users desire products with robustness, durability and high reliability to resist these harsh working conditions.

Transportation vehicle

Metric and inch needle roller bearings have various structural types, mainly including open drawn cup needle roller bearings, closed drawn cup needle roller bearings, needle roller bearings with inner ring and needle roller bearings without inner ring/without inner ring Cage needle roller bearings, caged and cageless needle roller bearings. Widely used in automobiles, motorcycles, mopeds, power tools, textiles, agricultural machinery, printing machinery, construction machinery, automatic instruments and other fields.

Automatic machinery

Industrial robot bearings mainly include 2 categories: 1 is thin-walled bearings, and the other is crossed cylindrical roller bearings. In addition, there are harmonic reducer bearings, linear roller bearings, spherical plain bearings, etc. Bearings with good performance have large bearing capacity, good rigidity, high rotation precision and easy installation.

 

Packaging & Shipping

FAQ

Q: Are you trading company or manufacturer?
A: We are bearing manufacturer.

Q: How do you control quality of bearing?
A: All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail  for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Nonstandard
Sealing Gland: Non-Seal
Rolling-Element Number: Double-Row
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What Factors should be Considered when Selecting a Tapered Roller Bearing for a Specific Application?

Choosing the right tapered roller bearing for a specific application involves considering various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Load Requirements:

Assess the types and magnitudes of both radial and axial loads the bearing will experience. Choose a tapered roller bearing with a load capacity that comfortably exceeds the expected loads to prevent premature wear or failure.

  • Speed:

Determine the required rotational speed of the bearing. High-speed applications may require bearings designed for reduced friction and heat generation to maintain efficiency and avoid overheating.

  • Precision and Tolerance:

Consider the level of precision required for the application. Tapered roller bearings are available in different precision classes, such as ABEC (Annular Bearing Engineering Committee) grades, which impact factors like smoothness and accuracy of rotation.

  • Mounting and Installation:

Assess the available space for mounting the bearing and consider the ease of installation. Bearings with adjustable clearance or preload might be advantageous for fine-tuning the bearing’s internal play.

  • Temperature and Environment:

Take into account the operating temperature range and environmental conditions of the application. Extreme temperatures or corrosive environments may require specific bearing materials or coatings.

  • Lubrication:

Choose an appropriate lubricant based on the application’s speed, temperature, and load conditions. Proper lubrication ensures smooth operation, reduces friction, and prolongs the bearing’s lifespan.

  • Cost and Budget:

Consider the budget allocated for bearings. High-precision or specialized bearings may come at a higher cost, but their performance benefits can outweigh the initial investment over the bearing’s service life.

  • Application Type:

Identify the specific industry and application in which the bearing will be used. Tapered roller bearings are employed in various sectors, including automotive, heavy machinery, aerospace, and more.

  • Expected Lifespan:

Estimate the required bearing lifespan for the application. Factors such as load, speed, and maintenance practices can impact the bearing’s longevity.

  • Bearing Size and Design:

Choose a bearing size that fits within the application’s space constraints while providing the necessary load capacity. The design, including the number and arrangement of rollers, can influence load distribution and performance.

  • Maintenance Requirements:

Consider the maintenance schedule and accessibility for bearing inspection and replacement. Bearings in applications with limited maintenance intervals may require enhanced durability.

In conclusion, selecting a tapered roller bearing for a specific application involves assessing load requirements, speed, precision, mounting, temperature, lubrication, cost, application type, expected lifespan, bearing size, and maintenance considerations. Careful evaluation of these factors ensures that the chosen bearing meets the demands of the application while providing reliable performance and longevity.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China wholesaler Slewing Bearing 023.40.1800 022.40.1800 024.40.1800 Double Row Angular Contact Ball Slewing Bearings Slewing Bearing Crane   bearing bronzeChina wholesaler Slewing Bearing 023.40.1800 022.40.1800 024.40.1800 Double Row Angular Contact Ball Slewing Bearings Slewing Bearing Crane   bearing bronze
editor by CX 2024-05-06

China Professional Application Versatility 7012 Cdga/P4a Single Row Angular Contact Ball Bearing double row ball bearing

Product Description

7012 CDGA/P4A Single Row Angular Contact Ball Bearing Introduction:
Angular contact ball bearings are specialized types of bearings designed to support both radial and axial loads simultaneously. And they are versatile components known for their ability to support combined radial and axial loads, making them essential in a wide range of mechanical systems and machinery.
7012 CDGA/P4A Single Row Angular Contact Ball Bearing key features and application:

  1. Construction: Angular contact ball bearings typically consist of an inner ring, an outer ring, a cage (or separator), and rows of balls. The inner and outer rings have raceways, while the balls are positioned between them.

  2. Contact Angle: Unlike deep groove ball bearings, which have a contact angle of 0°, angular contact ball bearings have a contact angle, usually between 15° and 40°. This angle allows them to support axial loads in addition to radial loads.

  3. Types: Angular contact ball bearings come in several configurations, including single-row, double-row, and four-point contact bearings. Single-row bearings can accommodate axial loads in 1 direction, while double-row bearings can handle axial loads in both directions.

  4. Preload: To optimize performance, angular contact ball bearings may be preloaded during installation. Preload applies a slight internal load to the bearings, which helps eliminate play and improve rigidity.

  5. High-Speed Capability: Angular contact ball bearings are capable of operating at high speeds due to their design, which reduces friction and heat generation.

  6. Applications: These bearings are commonly used in various industries, including automotive, aerospace, machine tooling, and robotics. They are suitable for applications such as wheel hubs, electric motors, pumps, and gearboxes, where both radial and axial loads are present.

  7. Sealing Options: Depending on the application requirements, angular contact ball bearings may come with different sealing options, such as shields or seals, to protect against contaminants and retain lubrication.

7012 CDGA/P4A Single Row Angular Contact Ball Bearing Display:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Thrust Bearing
Material: Bearing Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can you explain the installation and alignment considerations for rolling contact bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of rolling contact bearings. Incorrect installation or misalignment can lead to premature wear, increased friction, reduced load-carrying capacity, and potential bearing failure. Here’s a detailed explanation of the installation and alignment considerations for rolling contact bearings:

  • Clean and Proper Workspace:

Before installing rolling contact bearings, it is essential to ensure a clean and suitable workspace. The work area should be free from dirt, dust, debris, and contaminants that could enter the bearing during installation. Contamination can cause damage to the bearing surfaces and compromise its performance. Additionally, the workspace should have appropriate tools and equipment to facilitate the installation process, including bearing pullers, mounting tools, and measurement instruments.

  • Handling and Storage:

Rolling contact bearings should be handled with care to prevent damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from moisture, dust, and extreme temperatures. During handling, it is important to avoid dropping or impacting the bearings, as this can cause surface damage or internal defects. Proper handling and storage practices help maintain the integrity of the bearings and ensure their performance during installation.

  • Shaft and Housing Preparation:

Prior to installing the rolling contact bearings, the shaft and housing surfaces must be prepared appropriately. The shaft and housing should be clean, free from burrs, and have the correct dimensions and tolerances specified by the bearing manufacturer. Any roughness or irregularities on the shaft or housing can affect the fit and alignment of the bearing, leading to performance issues. It may be necessary to use appropriate tools, such as emery cloth or a deburring tool, to smooth the surfaces and ensure proper fitment.

  • Bearing Mounting:

When mounting rolling contact bearings, it is essential to follow the manufacturer’s recommended procedures and guidelines. This includes using the appropriate mounting tools and techniques to apply the necessary axial or radial force evenly during installation. Overloading or uneven force application can lead to bearing damage or misalignment. Proper mounting techniques may involve using a press, heat, or specialized mounting tools to ensure the bearing is seated securely and accurately on the shaft or in the housing.

  • Alignment:

Accurate alignment of rolling contact bearings is critical for their optimal performance. Misalignment can cause increased friction, premature wear, and reduced load-carrying capacity. It is important to align the bearing with respect to the shaft and housing to ensure proper concentricity and parallelism. Alignment methods may include visual alignment, feeler gauges, dial indicators, laser alignment systems, or other precision alignment tools. The specific alignment requirements may vary depending on the bearing type, application, and manufacturer recommendations.

  • Lubrication:

Proper lubrication is essential during the installation of rolling contact bearings. The bearing manufacturer’s recommendations should be followed regarding the type, quantity, and method of lubrication. Lubrication helps reduce friction, dissipate heat, and protect against wear and corrosion. It is important to ensure that the bearing is adequately lubricated during installation to facilitate smooth operation and prevent damage.

  • Verification and Testing:

After installation, it is recommended to verify the proper fitment, alignment, and operation of the rolling contact bearings. This may involve checking the axial and radial clearances, measuring runout, and performing functional tests to ensure smooth rotation and proper load distribution. Verification and testing help confirm the successful installation and identify any potential issues that may require adjustment or corrective action.

In summary, proper installation and alignment considerations are essential for the optimal performance and longevity of rolling contact bearings. Following recommended procedures, handling the bearings carefully, preparing the shaft and housing surfaces, ensuring accurate alignment, and providing appropriate lubrication contribute to the successful installation and reliable operation of rolling contact bearings in various applications.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

How do rolling contact bearings differ from other types of bearings like plain bearings?

Rolling contact bearings and plain bearings are two different types of bearings used in mechanical systems, and they differ in their design, operation, and characteristics. Here’s a detailed explanation of the differences between rolling contact bearings and plain bearings:

  • Design and Construction:

Rolling contact bearings, as the name suggests, utilize rolling elements (such as balls or rollers) to facilitate smooth motion between the rotating or moving parts. They consist of an inner ring, an outer ring, rolling elements, and a cage or retainer that keeps the rolling elements in position. The rolling elements roll between the raceways of the inner and outer rings, reducing friction and enabling relative motion.

Plain bearings, on the other hand, rely on a sliding interface between the bearing surfaces. They typically consist of two surfaces: a stationary bearing surface and a moving surface. The stationary surface is often a metal shell or housing, while the moving surface is a separate bearing material, such as a low-friction metal or polymer. The two surfaces slide against each other, with a lubricating film separating them to minimize friction.

  • Friction and Efficiency:

One of the key differences between rolling contact bearings and plain bearings is the amount of friction generated during operation. Rolling contact bearings have lower friction compared to plain bearings. The rolling elements in rolling contact bearings reduce the contact area and allow for rolling motion, resulting in reduced friction and improved efficiency. In contrast, plain bearings rely on sliding motion, which generates more friction and can lead to higher energy losses.

  • Load Capacity and Performance:

Rolling contact bearings are typically designed to handle higher loads and provide better load distribution compared to plain bearings. The rolling elements in rolling contact bearings distribute the loads across their contact surfaces, reducing stress concentrations and enabling the bearings to support heavier loads. This makes rolling contact bearings suitable for applications with higher load requirements, such as heavy machinery and industrial equipment.

Plain bearings, while generally having lower load capacities, offer advantages in applications that require self-lubrication or the ability to operate in harsh environments. The sliding motion in plain bearings helps distribute lubrication evenly across the bearing surfaces, reducing the need for external lubrication systems. Additionally, plain bearings can better tolerate contaminants, such as dirt or debris, which can cause problems in rolling contact bearings.

  • Maintenance and Service Life:

Rolling contact bearings typically require less maintenance compared to plain bearings. Rolling contact bearings are designed with pre-defined lubrication systems, and periodic lubrication or inspection is usually sufficient to ensure their proper operation. Plain bearings, on the other hand, may require regular lubrication or replacement of the bearing material to maintain optimal performance.

In terms of service life, rolling contact bearings often have a longer service life compared to plain bearings. The rolling motion and reduced friction in rolling contact bearings result in less wear and longer operational durability. Plain bearings, due to the sliding motion, may experience more wear over time, especially in high-load or high-speed applications.

  • Application and Usage:

Rolling contact bearings and plain bearings find their applications in different scenarios. Rolling contact bearings are commonly used in applications that require high-speed rotation, precise motion control, and heavy load-carrying capacity. They are found in various industries, including automotive, aerospace, industrial machinery, and more.

Plain bearings, on the other hand, are often utilized in situations where self-lubrication, resistance to contaminants, or low-speed and oscillating motion are required. They are commonly found in applications such as engines, pumps, turbines, and construction equipment.

In summary, rolling contact bearings and plain bearings differ in their design, operation, friction characteristics, load-carrying capacity, maintenance requirements, and applications. Rolling contact bearings utilize rolling elements for reduced friction, higher load capacity, and efficient motion, making them suitable for high-speed and heavy-load applications. Plain bearings rely on sliding surfaces, offer self-lubrication advantages, and are often used in low-speed or oscillating motion scenarios.

China Professional Application Versatility 7012 Cdga/P4a Single Row Angular Contact Ball Bearing   double row ball bearingChina Professional Application Versatility 7012 Cdga/P4a Single Row Angular Contact Ball Bearing   double row ball bearing
editor by CX 2024-04-30

China Standard Double Row Angular Contact Ball Bearing for Pneumatic Tool Bearing bearing bronze

Product Description

Angular contact ball bearings are CZPT to support radial load and axial load. As single row angular contact ball bearings can only support axial load in single direction, matched bearing mounting is often adopted to them as matched parts of bearings, preload for them is more convenient.
Retainers are made of brass, synthetic resins or others subject to individual bearing features and application conditions.

 

Angular contact ball bearing include:
1) Single row angular contact ball bearing
2) Matched angular contact ball bearing
3) Double row angular contact ball bearing
4) Four-point contact ball bearing

 

Angular contact ball bearings features :
1) Load capacities are higher than deep groove ball bearings of same dimensions;
2) Used for bearing radial-axial combined loads or pure thrust loads;
3) Low operating friction and high limiting speed.
 

Type

Angular contact ball bearing

Material

GCr15/stainless steel/carbon steel/Plastic/Ceramic

Bore size

35 mm

Outer diameter

72 mm

Width

30.2 mm

Seal type

Open RS Z 2RS ZZ

Cage

Stamping steel/Brass/Nylon/Ceramic

Certificate

ISO9001:2000

Application

Automobile, tractor, machine tool, electrical machine, 

water pump, agriculture machine, textile machine, etc.

Packaging

Original brand Plastic bag+Original brand Paper box+Original brand 

Carton box+Wooden pallet;

Customer’s special requests are acceptable.

Service

OEM service, Customization service, Customers’ Logo service;

Complete process for the production and quality assurance ensures our products can meet your 

requirement. We are committed to be responsible for each set of bearing and industrial products 

sold to our clients. Relying on strong resource network, we can supply any bearing with competitive 

price to meet each customer’ demand and guarantee each customer’s benefit.

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Angular Contact Ball Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

What are the Common Signs of Wear or Damage in Tapered Roller Bearings?

Identifying signs of wear or damage in tapered roller bearings is crucial for maintaining optimal performance and preventing costly failures. Here are the common signs to look for:

  • Abnormal Noise:

Unusual noises, such as grinding, clicking, or rumbling sounds, may indicate damage within the bearing. These noises could result from worn rollers, raceways, or insufficient lubrication.

  • Vibration:

Excessive vibration or unusual vibrations not typically present during operation may indicate an issue with the bearing. Vibration can result from misalignment, worn components, or uneven loading.

  • Increased Operating Temperature:

If the bearing becomes excessively hot during operation, it could indicate inadequate lubrication, excessive friction, or other issues. Monitoring temperature changes can help identify potential problems.

  • Irregular Rotation:

If the bearing experiences irregular rotation, such as sticking or rough movement, it could be due to damaged rollers, misalignment, or improper preload.

  • Visible Wear:

Inspect the bearing for visible signs of wear or damage, such as pitting, scoring, discoloration, or deformation of the bearing components.

  • Increased Noise or Vibration Under Load:

If the bearing makes more noise or vibrates noticeably when subjected to load, it could indicate that the bearing is unable to handle the applied load properly.

  • Uneven Wear:

Uneven wear patterns on the rollers or raceways can suggest misalignment or inadequate lubrication, causing the bearing to experience uneven loading.

  • Loss of Performance:

If the bearing’s performance decreases, such as reduced efficiency or increased friction, it may indicate wear, contamination, or other issues affecting the bearing’s operation.

  • Looseness or Play:

If there’s excessive play or looseness in the bearing assembly, it could be a sign of worn components or inadequate preload, impacting the bearing’s stability and performance.

  • Leaks or Contaminants:

Inspect for leaks of lubricant or the presence of contaminants around the bearing. Leaks can indicate seal damage, and contaminants can accelerate wear.

  • Observable Damage to Components:

If any bearing components, such as rollers, cages, or raceways, appear visibly damaged or deformed, immediate attention is necessary to prevent further issues.

Regular inspection and maintenance are essential to catch these signs early and prevent further damage. Addressing wear or damage promptly can extend the bearing’s lifespan and avoid costly downtime.

tapered roller bearing

What Advantages do Tapered Roller Bearings Offer Compared to Other Bearing Types?

Tapered roller bearings offer several advantages that make them a preferred choice in various applications compared to other bearing types. These advantages stem from their unique design and capabilities. Here’s a look at the benefits of tapered roller bearings:

  • High Load-Carrying Capacity:

Tapered roller bearings can handle both radial and axial loads simultaneously, making them suitable for applications with combined loads. Their conical geometry allows for effective load distribution, enabling them to support heavy loads without premature wear.

  • Efficient Axial Load Handling:

Tapered roller bearings excel at managing axial (thrust) loads in one direction. This capability is crucial in applications where axial loads are present, such as automotive transmissions or industrial machinery.

  • Reduced Friction and Heat Generation:

The conical shape of the rollers and the matching raceways result in point contact, reducing friction and minimizing heat generation. This efficiency contributes to improved overall performance and energy savings.

  • Adjustable Clearance and Preload:

Tapered roller bearings often allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s play, optimizing performance and extending the bearing’s lifespan.

  • High Precision:

Tapered roller bearings are available in various precision classes to meet different application requirements. Their precision makes them suitable for applications demanding accurate motion control and positioning.

  • Versatility:

Tapered roller bearings are used in a wide range of industries and applications, from automotive and heavy machinery to aerospace and industrial equipment. Their ability to handle diverse loads and conditions contributes to their versatility.

  • Durability:

Tapered roller bearings are designed to withstand shocks and impacts, making them suitable for applications with dynamic loads or vibrations. Their robust construction contributes to their overall durability.

  • High-Speed Capability:

Tapered roller bearings can operate at high speeds due to their efficient contact geometry and reduced friction. This makes them suitable for applications requiring rapid rotation.

  • Cost-Effectiveness:

While the initial cost may vary, tapered roller bearings are often cost-effective due to their long service life and ability to handle heavy loads. Their durability can lead to reduced maintenance and replacement costs over time.

  • Compatibility with Combined Loads:

Tapered roller bearings are well-suited for applications where radial and axial loads occur simultaneously, eliminating the need for multiple bearing types and simplifying design and installation.

In summary, tapered roller bearings offer a combination of load-carrying capacity, efficiency, adjustability, precision, and versatility that sets them apart from other bearing types. Their ability to handle a variety of loads and conditions makes them an advantageous choice in numerous industrial applications.

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

China Standard Double Row Angular Contact Ball Bearing for Pneumatic Tool Bearing   bearing bronzeChina Standard Double Row Angular Contact Ball Bearing for Pneumatic Tool Bearing   bearing bronze
editor by CX 2024-04-25

China supplier China Distributor Spherical/Cylindrical /Tapered/Metric Vibrating Screen Roller Bearing and Angular/Insert/Thrust/Pillow Block/Deep Groove Ball Bearing double row ball bearing

Product Description

 

Why Choose US

1.Professional Bearing Manufacturer with 10 years export experience.
2.Large Stock.
3.Prompt Lead time.
4.SMALL order accepted.
5.A Wide Range of Qualified Bearing with Competitive price.
6.FREE Samples.
7.Brand Packagings accepted.
8.OEM service(Manufacturing according to your drawings and special request).

Brief Introduction

SHZ BEARING MANUFACTURING Co., Ltd is a professional bearing factory and trading company in HangZhou, ZheJiang .

The factory mainly produce Tapered roller bearing, Deep groove ball bearing, Wheel hub bearing, Clutch release bearing,
Pillow block bearing
, etc. After 10 years in the global market, SHZ Bearings get a high reputation among following Countries
and regions: Russia, Algeria, Egypt, Italy, Korea, Mexico, Brazil, South Africa, Turkey, Iran, Pakistan, Singapore,
Philipphines, USA
and so on.

SHZ has accumulated more than 10 years in bearing innovation and production. SHZ persist with “Quality first, Innovation win,
Service first” as perpose. “The pursuit of perfect quality, create first-class brand” as management policy, promoting the brand
strategy,continuously improving product quality and brand connotation.

SHZ has the most advanced production equipments and strictest quality control system, it makes our products meet domestic
and international standard.

Welcome all of customers visit our factory and cooperate for mutual benefit.

Product Description

 

Name

   Taper Roller Bearing

Model Number

   25590/10

Brand

CZPT Or Customized Logo

Material

Chrome Steel (GCR15/SAE51200)

Precision

   P0, P6, P5, P4, P2 or as requested

Quality Standard

ISO9001:2008

Service

ODM & OEM, Customized Packing & Logo acceptable

Tapered Roller Bearing Size Chart:

Note1: Enough Stock and Short Delivery Time For following Models, Sample Order are accepted.

Note2: This is only a small part of our Tapered Roller Bearing, if you fail to find the 1 you need, please click “CONTACT US”
below, we will response immediately.
 

Model No.

Model No.

Model No.

Model No.

Model No.

Model No.

Model No.

Model No.

35712

30302

32204

32304

32004

33005

31303

30303D

35713

30303

32205

32305

32005

33006

31304

30304D

35714

30304

32206

32306

32006

33007

31305

30305D

35715

30305

32207

32307

32007

33008

31306

30306D

35716

30306

32208

32308

32008

33009

31307

30307D

35717

30307

32209

32309

32009

33571

31308

30308D

35718

30308

32210

32310

32571

33011

31309

30309D

35719

30309

32211

32311

32011

33012

31310

3571D

35710

3571

32212

32312

32012

33013

31311

3571D

35711

3571

32213

32313

32013

33014

31312

3571D

35712

3571

32214

32314

32014

33015

31313

3571D

35713

3571

32215

32315

32015

33016

31314

3571D

35714

3571

32216

32316

32016

33017

31315

3571D

35715

3571

32217

32317

32017

33018

31316

3 0571 D

35716

3 0571

32218

32318

32018

33019

31317

3 0571 D

35717

3 0571

32219

32319

32019

33571

31318

3 0571 D

35718

3 0571

32220

32320

32571

33571

31319

3571D

35719

3571

32221

32321

32571

33571

31320

30320D

35710

30320

32222

32322

32571

33571

31322

30322D

General Packing Methods:
A: Tube Package + Outer Carton + Pallet

B: Single Box + Outer Carton + Pallet

C: Tube Package + Middle Box + Outer Carton + Pallet
D: Single package+ Middle Box+ Outer Carton+ Pallet

E: According to your request

Production & Quality Control

 

Our Service & Exhibition Show

Payment & Deivery

 

  Delivery Time Payment Terms Shipping Method
Samle Order 1-3days 100% in Advance By Air
LCL Order 3-25days 30% Deposit and the Balance Paid
Before Shipment Or Against B/L Copy
By Air Or By Sea
FCL Order 25-45days By Air Or By Sea

FAQ

1. How many the MOQ of your company?
Our company MOQ is 1pc.

2. Could you accept OEM and customize?

YES, We can customize for you according to your sample or drawings.

3. Could you supply samples for free?

YES, We can supply samples for free, while you have o pay for the freight cost.

4. What is your terms of delivery?

We can accept EXW, FOB, CFR, CIF, etc. You can choose the 1 which is the most convenient cost effective for you.

5. Is it your company factory or Trade company?

We are factory, our type is Factory+Trade.

6. What is the warranty for your bearing?
2years, Customer need supply photos and send bearings back.

7. Could you tell me the packing of your goods?

Single Plastic Bag+Inner Box+Carton+Pallet, or according to your request.

8. Could you supply door to door service?

YES, by air or by express (DHL, FEDEX, TNT, EMS, SF7-10 days to your city)

9. Could you tell me the payment term of your company can accept?

T/T, Western Union, Paypal, L/C, etc.

10. What about the lead time for mass production?

Honestly, it depends on the order quantity and the season you place the order, our production capacity is 8*20ft containers
each month. Generally speaking, we suggest you start inquiry 3 to 4 months before the date you would like to get the
products at your Country.

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Clearance: C0 /C2/C3
Tolerance Level: P0, P6, P5
Lubrication: Oil, Grease
Seals Type: Open
Sample: Available
Application: Machinery Electric Accessories, Auto Spare Parts
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

Can you Explain the Design and Construction of Tapered Roller Bearings?

The design and construction of tapered roller bearings are characterized by their conical geometry and specific components that enable them to handle radial and axial loads simultaneously. Here’s an overview of their design and construction:

  • Components:

Tapered roller bearings consist of the following components:

  • Inner Ring:

The inner ring has a conical raceway on its inner surface, which matches the conical shape of the rollers. It serves as the raceway for the rollers and provides support to the rotating assembly.

  • Outer Ring:

The outer ring also features a conical raceway on its inner surface that complements the shape of the rollers. The outer ring provides a rigid structure to house the entire bearing assembly.

  • Tapered Rollers:

The rollers have a conical shape with varying diameters along their length. This design allows the rollers to make point contact with the inner and outer raceways, distributing loads efficiently.

  • Cage:

The cage or retainer holds the rollers in position, maintaining proper spacing and preventing them from coming into contact with each other. The cage material can vary, and its design may affect factors like friction and heat generation.

  • Conical Geometry:

The distinguishing feature of tapered roller bearings is their conical geometry. The conical angle is defined by the contact angle between the roller axis and the bearing axis. This angle facilitates effective load distribution and axial load support.

  • Load Distribution:

The conical shape of the rollers and raceways allows tapered roller bearings to handle both radial and axial loads. Radial loads are primarily supported by the larger diameter of the rollers at the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance and Preload:

Many tapered roller bearings allow for adjustable internal clearance or preload. This feature enables fine-tuning of the bearing’s internal play, optimizing performance and minimizing friction.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings find applications in various industries, including automotive, heavy machinery, aerospace, and more. They are used in scenarios that require efficient load distribution and handling of combined loads.

In summary, tapered roller bearings are designed with conical geometry to accommodate both radial and axial loads. Their specific components, such as tapered rollers and a cage, work together to ensure effective load distribution, making them suitable for a wide range of industrial applications.

tapered roller bearing

What are Tapered Roller Bearings and How do They Function in Machinery?

Tapered roller bearings are a type of rolling element bearing designed to handle both radial and axial loads by providing a conical geometry. They consist of inner and outer rings, tapered rollers, and a cage that holds the rollers in place. Tapered roller bearings are commonly used in various machinery and equipment for their ability to support high radial and axial loads simultaneously. Here’s how they function in machinery:

  • Geometry:

Tapered roller bearings have an inner ring with a conical surface and an outer ring with a matching conical surface. The rollers are also shaped like truncated cones. This geometry allows the rollers to make contact with both the inner and outer raceways at a common point on the bearing axis, distributing loads more effectively.

  • Load Distribution:

The conical shape of tapered rollers enables them to handle both radial and axial loads. Radial loads are supported by the larger diameter of the rollers near the large end of the cone, while axial loads are absorbed by the smaller diameter near the small end of the cone.

  • Adjustable Clearance:

Tapered roller bearings often allow for adjustable clearance or preload. This feature permits fine-tuning of the bearing’s internal play to optimize performance, reduce friction, and prevent excessive wear.

  • Thrust Capability:

Tapered roller bearings can handle thrust (axial) loads in one direction, making them suitable for applications where axial loads need to be managed along with radial loads.

  • Applications:

Tapered roller bearings are commonly used in various machinery and equipment:

  • Automotive Industry:

Tapered roller bearings are widely used in wheel hubs, transmissions, and differential systems in automobiles, where they handle radial and axial loads experienced during driving.

  • Heavy Machinery:

In construction equipment, mining machinery, and industrial machinery, tapered roller bearings support heavy loads and shocks, making them suitable for applications like earthmoving and material handling.

  • Aerospace:

Tapered roller bearings are used in aircraft landing gear, where they support both vertical and horizontal loads during takeoff, landing, and taxiing.

  • Railways:

In trains, tapered roller bearings are used in wheelsets and axles to manage radial and axial loads that occur as the train moves along curves and straight tracks.

  • Wind Energy:

Tapered roller bearings are employed in wind turbine gearboxes, where they handle the radial and axial loads associated with converting wind energy into electrical power.

  • Installation:

Installation of tapered roller bearings often involves adjusting the internal clearance or preload to optimize performance. Proper lubrication is crucial to ensure smooth operation and longevity.

In summary, tapered roller bearings function by utilizing their conical geometry to support both radial and axial loads, making them versatile components in a wide range of machinery and equipment across various industries.

tapered roller bearing

How does Proper Lubrication Impact the Performance and Longevity of Tapered Roller Bearings?

Proper lubrication is essential for ensuring optimal performance and longevity of tapered roller bearings. Lubrication plays a critical role in reducing friction, preventing wear, and managing heat generated during operation. Here’s how proper lubrication impacts tapered roller bearings:

  • Reduced Friction:

Lubrication forms a thin film between the rolling elements and raceways, reducing direct metal-to-metal contact. This minimizes friction and the associated heat generation, allowing the bearing to operate smoothly and efficiently.

  • Wear Prevention:

Lubrication forms a protective barrier that prevents wear and surface damage. Without proper lubrication, friction can lead to accelerated wear, pitting, and even surface scoring, shortening the bearing’s lifespan.

  • Heat Dissipation:

Effective lubrication helps dissipate heat generated during operation. This is especially crucial in high-speed applications where excessive heat can lead to premature bearing failure or degradation of lubricant properties.

  • Corrosion Protection:

Lubrication helps create a barrier that protects bearing surfaces from environmental factors that could lead to corrosion. This is particularly important in applications exposed to moisture, chemicals, or other corrosive agents.

  • Noise and Vibration Reduction:

Proper lubrication can dampen vibrations and reduce noise by providing a cushioning effect between the rolling elements and raceways. This contributes to smoother and quieter operation.

  • Longevity:

Well-lubricated bearings experience less wear and stress, leading to extended service life. Bearings that are inadequately lubricated or run dry are prone to premature failure due to excessive wear, heat buildup, and damage to bearing surfaces.

  • Efficiency:

Adequate lubrication maintains the bearing’s efficiency by minimizing energy losses due to friction. Bearings that lack proper lubrication require more energy to overcome higher friction levels, resulting in reduced efficiency.

  • Lubrication Methods:

Various lubrication methods are available, including grease lubrication and oil lubrication. The choice depends on factors such as speed, load, temperature, and application requirements.

To ensure proper lubrication:

  • Follow Manufacturer Recommendations:

Consult the bearing manufacturer’s recommendations for lubricant type, viscosity, and replenishment intervals.

  • Monitor and Maintain:

Regularly monitor the condition of the lubricant and the bearing’s performance. Implement a maintenance schedule for lubricant replacement or replenishment.

  • Environmental Considerations:

Consider the operating environment’s temperature, contamination levels, and exposure to external elements. Some applications may require special lubricants for extreme conditions.

In summary, proper lubrication is crucial for maintaining tapered roller bearings’ performance, preventing wear, reducing friction and heat, and extending their lifespan. A well-lubricated bearing contributes to smoother operation, lower maintenance costs, and improved efficiency.

China supplier China Distributor Spherical/Cylindrical /Tapered/Metric Vibrating Screen Roller Bearing and Angular/Insert/Thrust/Pillow Block/Deep Groove Ball Bearing   double row ball bearingChina supplier China Distributor Spherical/Cylindrical /Tapered/Metric Vibrating Screen Roller Bearing and Angular/Insert/Thrust/Pillow Block/Deep Groove Ball Bearing   double row ball bearing
editor by CX 2024-04-23

China Hot selling Single Row Angular Contact Ball Bearing Rolling Bearing for Industrial Machinery and Equipment double row ball bearing

Product Description

Single Row Angular Contact Ball Bearing Rolling Bearing for Industrial Machinery and Equipment

Product Description

Company Profile

HangZhou HONGSHI MACHINERY AND ELECTRICAL EQUIPMENT CO.,LTD. (formerly HangZhou Hengmai Bearing Co., Ltd.) was established in 2007, and HMMH is our own brand.
HMMH mainly produces spherical roller bearings, pillow block ball bearing, deep groove ball bearings and cylindrical roller bearings. Spherical roller bearing products range from 20mm to 1M, with the main production of crusher bearings 22300 series. Low noise deep groove ball bearings, product accuracy can reach ZV2, ZV3, ZV4, mainly produces motor bearings 6200, 6300 series. pillow block ball bearing, mainly producing UCP, UCF, UCFL, UCFC, UCT series, the products are mainly used in agricultural machine and peeling machine. We also use the bainite quenching process to ensure the hardness of the bearing, using good testing equipment, such as roundness meter, profiler, roughness meter, universal measuring instrument, spectrometer, metallographic microscope to control each detail quality monitoring.

To ensure product quality, we have established a strict quality control system and an experienced team of engineers and after-sales service. From forgings to final products  we have a strict quality control system.

Your needs are our production motivation, and your satisfaction is our goal. We are willing to serve our customers with the goal of “Quality First, Service First, Credit First”.

FAQ

1.A:How can I do customized design?
   Q:We are request for the drawing with the measurement, material and other speicifcation as details as you can, and for the customized products, our MOQ is 10 pcs per design

2.Q: How can I get a sample?
   A: If you only need 1or 2 samples for small size inner weight below 2kgs, we can supply free samples and we have stocks, you can just pay the shipping cost .if you need several design samples, then you should paid the cost with shipping.

3.Q: What package do you usually use?
   A: Usually we use single box or tape. Also according to customer’s special requirement.

4.Q:How long do you need for production? Or what’s your production lead time?
   A:Usually could be sent our in 2-3 days if in stock for samples. Customized item usually need 14-30 days to produce.

5.Q:How long will you guarantee your quality?
   A:We supply test report and quality control photos from materials to finished goods during production.
 
6.Q:How to do after sale service?
   A:Good after-sale service is our promise. Before placing orders, our professional engineer will discuss all technical data and your bearing usage condition and CZPT you what kind of steel materials to fit your products and usage life possible.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Axial Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

rolling contact bearing

What is the impact of proper lubrication and maintenance on the performance and lifespan of rolling contact bearings?

Proper lubrication and maintenance have a significant impact on the performance and lifespan of rolling contact bearings. Adequate lubrication ensures smooth operation, reduces friction, prevents wear, and extends the service life of the bearings. Here’s a detailed explanation of the impact of proper lubrication and maintenance on rolling contact bearings:

  • Reduced Friction and Wear:

Proper lubrication forms a thin film of lubricant between the rolling elements and the raceways of the bearing. This lubricating film reduces friction and wear by minimizing direct metal-to-metal contact. It prevents the surfaces from rubbing against each other, reducing frictional forces and minimizing wear on the bearing components. Reduced friction and wear contribute to smoother operation, improved efficiency, and increased bearing lifespan.

  • Heat Dissipation:

Lubrication in rolling contact bearings helps dissipate heat generated during operation. The lubricant absorbs and carries away heat from the bearing, preventing excessive temperature rise. Adequate heat dissipation is crucial for maintaining proper operating conditions and preventing thermal damage to the bearing components. Proper lubrication ensures efficient heat transfer, which in turn contributes to the overall performance and durability of the bearing.

  • Protection Against Corrosion and Contamination:

Lubrication acts as a protective barrier, preventing corrosion and contamination of rolling contact bearings. The lubricant creates a barrier that shields the bearing surfaces from moisture, dust, dirt, and other contaminants that can lead to corrosion and premature wear. By providing a protective layer, proper lubrication helps maintain the integrity of the bearing components and extends their lifespan.

  • Load Distribution:

Proper lubrication ensures effective load distribution within rolling contact bearings. The lubricant helps distribute the applied loads evenly across the rolling elements and the raceways, minimizing stress concentrations and preventing premature fatigue failure. By promoting even load distribution, lubrication enhances the load-carrying capacity and longevity of the bearing.

  • Prevention of Excessive Clearance:

Over time, rolling contact bearings may experience wear, which can result in increased clearance between the rolling elements and the raceways. Proper lubrication helps reduce this clearance by filling the gaps and providing a cushioning effect. By minimizing excessive clearance, lubrication maintains the proper functioning and performance of the bearing, preventing issues such as vibration, noise, and reduced load-carrying capacity.

  • Maintenance and Inspection:

Regular maintenance and inspection are essential for optimizing the performance and lifespan of rolling contact bearings. Maintenance activities may include lubricant replenishment, cleaning, and periodic replacement of worn-out bearings. Regular inspections allow for the early detection of any signs of damage, excessive wear, or inadequate lubrication. Timely maintenance and inspections help identify and address potential issues before they escalate, ensuring the continued reliability and longevity of the bearings.

In conclusion, proper lubrication and maintenance significantly impact the performance and lifespan of rolling contact bearings. Adequate lubrication reduces friction, prevents wear, dissipates heat, and protects against corrosion and contamination. It promotes even load distribution and helps maintain the proper functioning of the bearing. Regular maintenance and inspections further ensure optimal performance and allow for timely intervention to address any potential issues. By following proper lubrication practices and conducting regular maintenance, the service life of rolling contact bearings can be extended, leading to improved efficiency, reduced downtime, and cost savings in various applications.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

Can you describe the load-carrying capacity and load ratings of rolling contact bearings?

Rolling contact bearings are designed to carry various types of loads in mechanical systems. The load-carrying capacity and load ratings of rolling contact bearings play a crucial role in determining their suitability for specific applications. Here’s a detailed explanation of these concepts:

  • Load-Carrying Capacity:

The load-carrying capacity of a rolling contact bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is influenced by factors such as the bearing’s design, material properties, and operating conditions. Rolling contact bearings are primarily designed to carry two types of loads:

  • Radial Loads: Radial loads act perpendicular to the axis of rotation and are supported by the bearing’s raceways. Radial loads can arise from the weight of the shaft, centrifugal forces, or external forces applied to the bearing. The load-carrying capacity for radial loads is typically specified by the maximum radial load the bearing can withstand without suffering permanent deformation or reduced performance.
  • Axial Loads: Axial loads act parallel to the axis of rotation and are supported by the bearing’s configuration, such as the arrangement of the rolling elements or the presence of thrust surfaces. Axial loads can arise from forces that push or pull along the axis of rotation. The load-carrying capacity for axial loads is typically specified by the maximum axial load the bearing can withstand without experiencing excessive wear or reduced performance.

It’s important to note that the load-carrying capacity of a rolling contact bearing is influenced by factors such as rotational speed, lubrication, temperature, and operating conditions. These factors can affect the performance and durability of the bearing under different load conditions.

  • Load Ratings:

Load ratings provide standardized values that indicate the maximum permissible loads a rolling contact bearing can carry under specific operating conditions. These ratings help engineers and designers select bearings that can withstand the expected loads in a given application. The two primary load ratings specified for rolling contact bearings are:

  • Dynamic Load Rating: The dynamic load rating (C) represents the maximum load that a bearing can carry for a specified number of revolutions or operating hours without developing excessive wear or fatigue. It is based on the bearing’s ability to withstand rolling contact fatigue, which is the most common mode of failure in rolling contact bearings. The dynamic load rating is typically provided by the bearing manufacturer and is expressed in units of force (such as Newtons or pounds-force).
  • Static Load Rating: The static load rating (Co) indicates the maximum load that a bearing can withstand without permanent deformation when the bearing is stationary or subjected to very slow rotational speeds. It represents the load capacity of the bearing under static or slowly changing loads. Similar to the dynamic load rating, the static load rating is also provided by the bearing manufacturer and expressed in units of force.

It’s important to consider both the dynamic and static load ratings when selecting a rolling contact bearing for an application. The dynamic load rating is crucial for assessing the bearing’s ability to withstand the varying loads during operation, while the static load rating provides information about the bearing’s resistance to deformation under stationary or slow-speed conditions.

By considering the load-carrying capacity and load ratings of rolling contact bearings, engineers can choose the appropriate bearing type and size to ensure reliable and efficient operation in their specific applications.

China Hot selling Single Row Angular Contact Ball Bearing Rolling Bearing for Industrial Machinery and Equipment   double row ball bearingChina Hot selling Single Row Angular Contact Ball Bearing Rolling Bearing for Industrial Machinery and Equipment   double row ball bearing
editor by CX 2024-04-19

China manufacturer Advance Auto Angular Contact Ball Bearings 30*72*19mm (7306) double row ball bearing

Product Description

Excavator Spare Parts Excavator Parts 7306 angular contact thrust bearing with high precision

Description:

Angular contact ball bearings are designed for combination radial and axial loading. Single-row bearings
have high thrust capacity in 1 direction. Some single-row bearings are specifically designed for duplex
mounting in sets for maximum performance. Double-row Conrad bearings can accommodate thrust in
both directions.

Specifications

Double row Angular contact Ball Bearing 
Model Number 7306
Structure Angular Contact
Type Ball
Brand Name CHIK
Dimension mm
Net weight kg
Seals Type Z, ZZ, RS, 2RZ, 2RS
Number of Row Single Row/Double Row
Place of Origin Janpan
Material Chrome steel, Stainless steel
Cage Brass, Steel, Nylon
Vibration Level V1, V2, V3
Clearance C0, C1, C2, C3, C4, C5 etc.
Precision Rating P0, P6, P5, P4, P2
Hardness 59-63HRC
Service OEM or original brand
Sample available Yes
Manufacturer Yes
Quality guaranteed Yes
Certificate ISO9001:2008, ISO/TS16949
Application/Function Automotive, Truck, Tractors, Construction machinery,  Electric Tools, Sports Apparatus, 
Office equipment, Medical devices
Other Service Design service, Buyer label service
Packaging Details Industrial Packing, Individual Boxed Packing, or OEM
Delivery Detail 2-7 days after receiving the payments or deposit

 

Good quality single row angular contact ball bearing mini tractor bearing 

Angular contact ball bearing:

QJF1018M 116118H 90 140 24
QJF1571M 100 150 24
QJF1026M 116126H 130 200 33
QJF1571M 116128H 140 210 33
QJF1030M 116130H 150 225 35
QJF1032M 116132H 160 240 38
QJF1034M 116134H 170 260 42
QJF1036M 116316 180 280 46
QJF1038M 116138H 190 290 46
QJF1044M 116144H 220 340 50
QJF1048M 116148H 240 360 56
QJF1052M 116152H 260 400 65
QJF1056M 116156H 280 420 65
QJF1060M 116160H 300 460 74
QJF220M 116220 100 180 34
QJF222M 116222H 110 200 38
QJF228M 116228H 140 250 42
QJF236M 116236H 180 320 52
QJF238M 116238H 190 340 55
QJF240M 116240H 200 360 58
QJF312M 116312H 60 130 31
QJF320M 116320H 100 215 47
QJF324M 116324H 120 260 55
QJF326M 116326H 130 280 58
QJF330M 116330H 150 320 65
QJF1030X1 150 224.5 35
QJF1032X1 160 239.5 38
QJF1034X1 170 259.5 42
QJF3936X1 180 259.5 52
QJF3938X3 190 289.5 46
QJF3940X3 116740H 200 289.5 58
QJF3944X1 220 309.5 60
QJF3948X1 116948 240 329.5 60
QJF3952X2 260 369.5 60
QJF29/321X2 320 440 65
QJF0/530X2 530 780 60
QJF9/560X3 1167/560 560 720 36
QJF6/700 700 900 36
QJF9/560X1 1168/560 560 780 60
QJF1930X3 150 225 35
QJF1936X3 180 249.5 33
QJF1940X3 200 280 51
QJF1944X3 220 300 60
QJF1956X3 280 375 65

Other deep groove ball bearing models NO. for your reference:

Bearing No. Dimensions(mm) ( KN) Weight
New Model ZZ 2RS d D B Cr Cor Mass(kg)
3200A 3200zz 32002RS 10 30 14.3 7 3.8 0.049
3201A 3201zz 32012RS 12 32 15 9 9 2 5 1 0.057
3202A 3202zz 32571RS 15 35 15.9 10 6.1 0.064
3203A 3203zz 32032RS 17 40 17.5 12 8 7 9 0 096
3204A 3204zz 32042RS 20 47 20.6 19 12.1 0.153
3205A 3205zz 32052RS 25 52 20.6 20.6 14 3 0 175
3206A 3206zz 32062RS 30 62 23.8 28.6 20.4 0.286
3207A 3207zz 32072RS 35 72 27 38 27.8 0.436
3208A 3208zz 32082RS 40 80 30.2 42.5 32.5 0.59
3209A 3209zz 32092RS 45 85 30.2 48 0 37 0.64
3210A 3210u 32102RS 50 90 30.2 51 42.O 0.689
3211A 3211zz 32112RS 55 100 33.3 63 0 53 0 986
3212A 3212zz 32122RS 60 110 36.5 71.5 58.5 1.27
3213A 3213zz 32132RS 65 120 38 1 83.5 72.5 1.57
3214A 3214zz 32142RS 70 125 39.7 87.5 79.5 1.8
3215A 3215zz 32152RS 75 130 41.3 90 80.5 1 900
3216A 3216zz 32162RS 80 140 44.4 106 95.5 2.39
3217A 3217zz 32172RS 85 150 49.2 112 106 3.06
3218A 3218zz 32182RS 90 160 52.4 140 129 3.73
3219A 3219zz 32192RS 95 170 55 6 163 184 5 100
3220A 3220zz 32202RS 100 180 60.3 210 240 6.14
3300A 3300zz 33002RS 10 35 19 9.2 5.1 0.092
3301A 3301zz 33012RS 12 37 19 10 6.1 0.109
3302A 3302zz 33571RS 15 42 19 12 8 7.9 0.132
3303A 3303zz 33032RS 17 47 22.2 20.4 12.1 0.181
3304A 3304zz 33042RS 20 52 22 2 20.6 127 227
3305A 3305zz 33052RS 25 62 25.4 30.5 20.5 0.362
3306A 3306zz 33062RS 30 72 302 39.5 27.5 0 553
3307A 3307zz 33072RS 35 80 34.9 49.5 35.O 0.766
3308A 3308zz 33082RS 40 90 36.5 60 5 44 1.01
3309A 3309zz 33092RS 45 100 39.7 72.5 54 1.34
3310A 3310zz 33102RS 50 110 44.4 85.5 64.5 1.81
3311A 3311zz 33112RS 55 120 49.2 106 82 2.32
3312A 3312zz 33122RS 60 130 54 122 95.5 3.05
3313A 3313zz 33132RS 65 140 58.7 138 109 3,960
3314A 3314zz 33142RS 70 150 63.5 155 125 4.74
3315A 3315zz 33152RS 75 160 68.3 168 141 5.65
3316A 3316zz 33162RS 80 170 68.3 175 151 7.21
3317A 3317zz 33172RS 85 180 73 196 240 8.3
3318A 3318zz 33182RS 90 190 73 225 266 9 01

Advantages of Angular Contact Ball Bearing:

 

1.Ultra clean steel to extend bearing life by up to 80%

2.Advanced grade technology

3.Quiet and smooth operation even at high speed

4.Super finished raceways

5.Offer products in 15,25 and 40 degree angles

6.Available in arrange of Polyamide, steel and brass cage assembles

 

High Quality, Competitive Price, Reliable Service, On-Time Delivery !Trieternal Can Be Your Thrusted Partner in Bearing Field !!!!

 
FAQ
 

Q1:How about your technical support of bearings?

1).Our bearings are produced in modern facilities using state of the art manufacturing techniques.

Q2:How about the quality of bearings?

2).Quality emphasis in all production processes coupled with 100% inspection for critical performance characteristics ensure product consistency.

Q3:What kinds of bearings you can manufacture?

3).We produces standard and custom ball bearings,roller bearings.We also produce custom bearings designed for your special needs.

 

Packaging & Shipping

Packaging:

1. Industrial packaging: plastic bag/plastic tube + kraft paper + carton + plywood pallets
2. Commercial packing: 1pc/plastic bag + color box + carton + plywood pallets
3. As the clients’ requirement

Shipping:

DHL, FEDEX, TNT,ARAMEX, By SEA ,By AIR

Photos of High speed Angular Contact Ball Bearing 7001 Bearing

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 2/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

Are there specific considerations for choosing rolling contact bearings in applications with extreme operating conditions or high precision requirements?

When selecting rolling contact bearings for applications with extreme operating conditions or high precision requirements, there are specific considerations to take into account. Here’s a detailed explanation of these considerations:

  • Operating Conditions:

In applications with extreme operating conditions, such as high temperatures, high speeds, or corrosive environments, special attention must be given to the bearing’s ability to withstand these conditions. Considerations include:

  • Temperature: High-temperature applications require bearings with heat-resistant materials and lubricants designed to withstand elevated temperatures without degradation. Specialized heat treatment processes may be necessary to enhance the bearing’s ability to handle thermal expansion and avoid premature failure.
  • Speed: High-speed applications demand bearings that can operate at significantly higher rotational speeds without excessive friction, heat generation, or loss of precision. Factors such as cage design, lubrication, and material selection play a crucial role in achieving reliable performance at high speeds.
  • Corrosion and Chemical Resistance: In corrosive environments or applications exposed to chemicals, bearings with corrosion-resistant materials, such as stainless steel or ceramic, and appropriate sealing mechanisms are essential to prevent premature failure due to chemical attack or rust formation.
  • Vibration and Shock: Applications subject to high vibration or shock loads require bearings capable of withstanding these dynamic forces. Special designs, such as extra internal clearance or improved cage stability, may be necessary to ensure reliable operation under such conditions.
  • Precision Requirements:

In applications with high precision requirements, such as precision instruments, machine tools, or optical equipment, specific considerations are essential to meet the desired level of accuracy and repeatability. Some key factors include:

  • Tolerance and Dimensional Stability: Bearings used in high-precision applications must have strict dimensional tolerances and excellent dimensional stability to ensure precise positioning and alignment. This requires careful control during the manufacturing process and the use of high-quality materials.
  • Runout and Radial Clearance: Runout, which refers to the deviation from perfect circularity, and radial clearance, which affects the internal play between the rolling elements and the raceways, must be tightly controlled to achieve the desired precision. Bearings with low runout and minimal radial clearance are preferred for high-precision applications.
  • Noise and Vibration: High-precision applications often require low noise and vibration levels. Bearings with optimized designs, such as improved cage stability, precision-ground raceways, and high-quality lubrication, help minimize noise and vibrations, ensuring accurate and quiet operation.
  • Lubrication: Proper lubrication is crucial for high-precision bearings to reduce friction, minimize wear, and maintain consistent performance. Lubricants with low viscosity, high stability, and excellent temperature characteristics are typically used in precision applications.

Choosing the right rolling contact bearings for applications with extreme operating conditions or high precision requirements requires careful consideration of factors such as temperature, speed, corrosion resistance, dimensional stability, and lubrication. Consulting with bearing manufacturers or experts can provide valuable guidance in selecting the most suitable bearings to meet the specific application’s demands.

rolling contact bearing

What are rolling contact bearings, and how are they utilized in mechanical systems?

Rolling contact bearings are mechanical components used to facilitate smooth and efficient motion between two or more parts in a mechanical system. They utilize rolling elements, such as balls or rollers, to minimize friction and enable relative motion between the rotating or moving parts. Here’s a detailed explanation of rolling contact bearings and their utilization in mechanical systems:

  • Definition and Construction:

Rolling contact bearings consist of an inner ring, an outer ring, rolling elements (balls or rollers), and a cage or retainer that holds the rolling elements in position. The inner and outer rings have raceways, which are carefully machined surfaces that guide the rolling elements. The rolling elements roll between the raceways, reducing friction and enabling smooth rotation or linear motion.

  • Types of Rolling Contact Bearings:

There are various types of rolling contact bearings, including:

  • Ball Bearings: These bearings use spherical balls as rolling elements and are suitable for applications with light to moderate loads and high-speed requirements. Ball bearings are commonly used in motors, fans, household appliances, and automotive applications.
  • Roller Bearings: Roller bearings use cylindrical or tapered rollers as rolling elements. They can handle higher loads and provide better shock absorption than ball bearings. Roller bearings are often found in heavy machinery, construction equipment, and industrial applications.
  • Needle Bearings: Needle bearings are a type of roller bearing with long, thin rollers. They have a high load capacity and are used in applications where space is limited and high radial load support is required.
  • Thrust Bearings: Thrust bearings are designed to support axial loads and allow for rotational or linear motion in the axial direction. They are commonly used in automotive transmissions, machine tools, and thrust applications.
  • Tapered Roller Bearings: Tapered roller bearings have conical rollers and are designed to handle both radial and axial loads. They are commonly used in wheel bearings, gearboxes, and heavy-duty applications.
  • Utilization in Mechanical Systems:

Rolling contact bearings are utilized in various mechanical systems for several reasons:

  • Reduced Friction: By utilizing rolling elements, rolling contact bearings minimize friction compared to sliding contact bearings. This reduces energy losses, heat generation, and wear, resulting in improved efficiency and extended service life of the mechanical system.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. They allow for low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, reducing stress concentrations and preventing premature wear or failure. This enables mechanical systems to handle various loads and forces without compromising performance.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials to suit a wide range of applications. They can accommodate different load capacities, speeds, and environmental conditions, making them adaptable and versatile in various mechanical systems.

In summary, rolling contact bearings are essential components in mechanical systems. They utilize rolling elements to minimize friction, enable smooth motion, distribute loads, and provide positional accuracy. By utilizing rolling contact bearings, mechanical systems can achieve efficient and reliable operation in a wide range of applications, from small appliances to heavy machinery and industrial equipment.

China manufacturer Advance Auto Angular Contact Ball Bearings 30*72*19mm (7306)   double row ball bearingChina manufacturer Advance Auto Angular Contact Ball Bearings 30*72*19mm (7306)   double row ball bearing
editor by CX 2024-04-17

China manufacturer Ceramic/Needle/Pillow Block/Auto/Deep Groove/Angular Contact Ball/ Rolling Bearing /Tapered Roller Bearing Rtb/Timken/NSK 32008X double row ball bearing

Product Description

Product Description

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Noise Standard: Zv1 Zv2 Zv3 Zv4
Precision Rating: P0, P6, P5, P4
Transport Package: Single Box Packing+Cartons+Pallets
Specification: Zz 2RS
Trademark: Huazhong
Origin: China
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rolling contact bearing

Can rolling contact bearings be customized or modified to meet specific industrial requirements?

Yes, rolling contact bearings can be customized or modified to meet specific industrial requirements. Bearing manufacturers offer a range of customization options to tailor bearings to unique application needs. These customizations can include modifications in design, materials, dimensions, and performance characteristics. Here’s a detailed explanation of the customization possibilities for rolling contact bearings:

  • Design Modifications:

Bearing manufacturers can modify the design of rolling contact bearings to suit specific industrial requirements. This can involve altering the internal geometry, such as ball or roller profiles, cage design, or the number and arrangement of rolling elements. Design modifications aim to optimize the bearing’s load-carrying capacity, speed capability, or resistance to specific operating conditions. By customizing the design, manufacturers can address unique challenges and enhance the performance of rolling contact bearings in specific applications.

  • Material Selection:

Rolling contact bearings can be customized by choosing specific materials for their components. Material selection depends on factors such as load requirements, operating temperatures, corrosion resistance, and lubrication conditions. Bearing manufacturers offer a variety of materials for various components, including bearing rings, rolling elements, cages, and seals. For example, high-temperature applications may require bearing rings made of heat-resistant steel or ceramic rolling elements to withstand the elevated temperatures. By selecting appropriate materials, rolling contact bearings can be customized to optimize their performance and reliability in specific industrial environments.

  • Dimensional Modifications:

Bearing dimensions can be customized to meet specific industrial requirements. This may involve adjusting the inner and outer ring diameters, bore and outer diameter tolerances, or overall bearing width. Dimensional modifications are particularly useful when retrofitting bearings into existing equipment with unique space constraints. Customized dimensional changes ensure proper fitment and compatibility with the surrounding components, enabling seamless integration of rolling contact bearings into the target application.

  • Sealing and Lubrication:

Sealing arrangements and lubrication options can be customized for rolling contact bearings. The choice of seals and lubricants depends on the desired level of contamination protection, operating temperatures, and specific requirements of the application. Customized sealing arrangements can include various types of seals, such as contact seals, non-contact seals, or specialized labyrinth seals, to prevent the ingress of contaminants and retain lubrication. Lubrication customization can involve selecting different types of lubricants, additives, or applying specific lubrication methods to optimize the bearing’s performance and extend its service life in specific industrial settings.

  • Specialized Coatings and Surface Treatments:

To enhance the performance and durability of rolling contact bearings, manufacturers offer specialized coatings and surface treatments. These modifications can include applying corrosion-resistant coatings, low-friction coatings, or protective surface treatments to improve wear resistance or reduce frictional losses. Specialized coatings and surface treatments can be customized to specific industrial requirements, providing enhanced performance, longer service life, and improved reliability in challenging operating conditions.

Customization options for rolling contact bearings ensure that they can be tailored to meet the specific needs of various industries and applications. By collaborating with bearing manufacturers and providing detailed application requirements, industrial users can benefit from customized bearings that offer optimized performance, increased reliability, and extended service life in their specific operating environments.

rolling contact bearing

How do rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment?

Rolling contact bearings play a crucial role in enhancing the overall efficiency and functionality of machinery and equipment. Here’s a detailed explanation of how rolling contact bearings contribute to improved efficiency and functionality:

  • Reduced Friction:

Rolling contact bearings are designed to minimize friction between moving parts. They consist of rolling elements, such as balls or rollers, that reduce the contact surface area and enable rolling motion. This rolling action results in lower friction compared to sliding contact, allowing machinery to operate with reduced energy consumption. By reducing frictional losses, rolling contact bearings help optimize the efficiency of machinery and equipment.

  • Load Distribution:

Rolling contact bearings distribute loads evenly across their rolling elements. This load distribution capability ensures that the forces acting on the machinery are spread out and shared by multiple bearing points. By distributing the load, rolling contact bearings help prevent excessive stress on individual components and minimize the risk of premature failure. This improves the overall functionality and reliability of machinery, allowing it to operate under heavy loads without compromising performance.

  • High-Speed Capability:

Rolling contact bearings are designed to operate at high speeds. The rolling elements and raceways are precisely engineered to minimize the centrifugal forces and minimize frictional heat generation. This allows machinery and equipment to achieve higher rotational speeds without compromising performance or reliability. The high-speed capability of rolling contact bearings is particularly advantageous in applications such as automotive engines, turbines, machine tools, and high-speed manufacturing processes.

  • Reduced Vibration and Noise:

Rolling contact bearings help reduce vibration and noise in machinery and equipment. The rolling action of the bearing elements minimizes friction-induced vibrations, resulting in smoother operation. Additionally, well-designed and properly lubricated rolling contact bearings dampen vibrations caused by external forces or imbalances in rotating parts. By reducing vibration and noise levels, rolling contact bearings contribute to a quieter and more comfortable working environment, as well as improved accuracy and precision in equipment that requires high levels of stability.

  • Versatility and Flexibility:

Rolling contact bearings offer versatility and flexibility in machinery design. They come in various types and configurations, such as deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings, and tapered roller bearings, each suited for specific applications and load conditions. The availability of different bearing sizes and designs allows engineers and designers to select the most appropriate bearing for their specific machinery requirements. This versatility and flexibility enable the optimization of machinery performance and functionality.

  • Compact Design:

Rolling contact bearings enable compact and space-saving machinery designs. Their ability to handle high loads while occupying minimal space allows for the creation of more compact equipment. This is particularly beneficial in applications where space is limited, such as automotive, aerospace, and portable devices. The compact design made possible by rolling contact bearings enhances the overall functionality and efficiency of machinery by maximizing the use of available space.

In summary, rolling contact bearings enhance the overall efficiency and functionality of machinery and equipment through reduced friction, load distribution, high-speed capability, vibration and noise reduction, versatility and flexibility in design, and compactness. By optimizing the performance of rotating components, rolling contact bearings contribute to improved energy efficiency, reliability, precision, and longevity of machinery and equipment in various industries.

rolling contact bearing

What are rolling contact bearings, and how are they utilized in mechanical systems?

Rolling contact bearings are mechanical components used to facilitate smooth and efficient motion between two or more parts in a mechanical system. They utilize rolling elements, such as balls or rollers, to minimize friction and enable relative motion between the rotating or moving parts. Here’s a detailed explanation of rolling contact bearings and their utilization in mechanical systems:

  • Definition and Construction:

Rolling contact bearings consist of an inner ring, an outer ring, rolling elements (balls or rollers), and a cage or retainer that holds the rolling elements in position. The inner and outer rings have raceways, which are carefully machined surfaces that guide the rolling elements. The rolling elements roll between the raceways, reducing friction and enabling smooth rotation or linear motion.

  • Types of Rolling Contact Bearings:

There are various types of rolling contact bearings, including:

  • Ball Bearings: These bearings use spherical balls as rolling elements and are suitable for applications with light to moderate loads and high-speed requirements. Ball bearings are commonly used in motors, fans, household appliances, and automotive applications.
  • Roller Bearings: Roller bearings use cylindrical or tapered rollers as rolling elements. They can handle higher loads and provide better shock absorption than ball bearings. Roller bearings are often found in heavy machinery, construction equipment, and industrial applications.
  • Needle Bearings: Needle bearings are a type of roller bearing with long, thin rollers. They have a high load capacity and are used in applications where space is limited and high radial load support is required.
  • Thrust Bearings: Thrust bearings are designed to support axial loads and allow for rotational or linear motion in the axial direction. They are commonly used in automotive transmissions, machine tools, and thrust applications.
  • Tapered Roller Bearings: Tapered roller bearings have conical rollers and are designed to handle both radial and axial loads. They are commonly used in wheel bearings, gearboxes, and heavy-duty applications.
  • Utilization in Mechanical Systems:

Rolling contact bearings are utilized in various mechanical systems for several reasons:

  • Reduced Friction: By utilizing rolling elements, rolling contact bearings minimize friction compared to sliding contact bearings. This reduces energy losses, heat generation, and wear, resulting in improved efficiency and extended service life of the mechanical system.
  • Smooth Motion: Rolling contact bearings enable smooth and controlled motion between components. They allow for low-friction rotation or linear movement, providing precise and reliable operation in a wide range of applications.
  • Load Distribution: Rolling contact bearings distribute loads evenly across their contact surfaces, reducing stress concentrations and preventing premature wear or failure. This enables mechanical systems to handle various loads and forces without compromising performance.
  • Positional Accuracy: Rolling contact bearings help maintain accurate positioning of components in mechanical systems, ensuring alignment and reducing the risk of misalignment-related issues. This is crucial in precision machinery, robotics, and other applications where positional accuracy is essential.
  • Versatility: Rolling contact bearings are available in different sizes, configurations, and materials to suit a wide range of applications. They can accommodate different load capacities, speeds, and environmental conditions, making them adaptable and versatile in various mechanical systems.

In summary, rolling contact bearings are essential components in mechanical systems. They utilize rolling elements to minimize friction, enable smooth motion, distribute loads, and provide positional accuracy. By utilizing rolling contact bearings, mechanical systems can achieve efficient and reliable operation in a wide range of applications, from small appliances to heavy machinery and industrial equipment.

China manufacturer Ceramic/Needle/Pillow Block/Auto/Deep Groove/Angular Contact Ball/ Rolling Bearing /Tapered Roller Bearing Rtb/Timken/NSK 32008X   double row ball bearingChina manufacturer Ceramic/Needle/Pillow Block/Auto/Deep Groove/Angular Contact Ball/ Rolling Bearing /Tapered Roller Bearing Rtb/Timken/NSK 32008X   double row ball bearing
editor by CX 2024-04-17